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1. ABSTRACT 

The role of climatic factors on the spread of infectious diseases has long been acknowledged, especially on diseases 
such as influenza. Our group has focused on the role of meteorological factors in influenza transmission in Hong 
Kong. Our group has tested effects of environmental variables on influenza transmission, results for the effect of 
meteorological and environmental variables influenza types and subtypes will be discussed. Our models are based 
off of Poisson regression and Neural Network. Neural Network proves to be a more accurate model than Poisson. 

 
2. INTRODUCTION 

Influenza is an acute viral infection that spreads easily from person to person and causes yearly 
epidemics. Worldwide, these annual epidemics result in about three to five million cases of 
severe illness, and about 250,000 to 500,000 deaths (WHO, 2009). In 2009, the emergence of the 
influenza strain H1N1 caused immediate attention to be focused on worldwide influenza 
surveillance capabilities. This act was in response to the WHO determining that the world was 
underprepared for influenza pandemics, mostly because of the lack of surveillance (Ortiz, 2009).  

 In addition to the significant burden annually, influenza viruses continually change over 
time, usually by mutation (change in the viral RNA), that can lead to a pandemic. This constant 
changing often enables the virus to evade the immune system of the host so that the host is 
susceptible to changing influenza virus infections throughout life. This process works as follows: 
a host infected with influenza virus develops antibodies against that virus; as the virus changes, 
the "first" antibody no longer recognizes the "newer" virus and infection can occur because the 
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host does not recognize the new flu virus as a problem until the infection is well under way. The 
first antibody developed may provide some protection against infection with a new influenza 
virus. Unfortunately, almost all individuals have no antibodies that will recognize the novel 
H1N1 virus immediately. Consequently, without vaccination, the majority of the human 
population is susceptible to novel H1N1 flu ("Flu (influenza, conventional)," 2010).  

The flu is divided into three types: A, B, and C. Among many subtypes of influenza A 
viruses, influenza A H1N1 and H3N2 subtypes are currently circulating among humans. 
Influenza types A and B are responsible for epidemics of respiratory illness that occur almost 
every winter in temperate regions and are often associated with increased rates of hospitalization 
and death. Influenza type C differs from types A and B in some important ways. Influenza Type 
C usually results in very mild respiratory illness or no symptoms at all; it is not responsible for 
pandemics and does not pose a serious threat to public-health (WHO, 2009). Influenza Type A 
and Type B are the main focus of this study, for they are responsible for nationwide pandemics.  

This study focuses on the role of meteorological factors in influenza transmission in 
Hong Kong. Research has shown that low temperatures have been linked to high levels of 
seasonal influenza (Lofgren, 2007).  Other factors that have been implicated in influenza 
transmission are listed in Table 1. Crowding has been known as a potential risk factor in the 
spread of disease. With this knowledge, it is no wonder why people contract influenza usually 
during the winter, when everyone huddles indoors away from harsh weather conditions. But then 
one may wonder why people at crowded resorts in tropical areas do not contract the viral disease. 
Hong Kong has a dense population, which has more potential for person-to-person spread of 
virus-laden aerosol particles. Hong Kong is also a subtropical region that experiences different 
seasons that significantly vary in temperature. Hong Kong is an advanced economy situated in 
the middle of the influenza basin in China, has established a sentinel surveillance network for 
Influenza like Illness (ILI) in the late 1990s and began reporting in 1998 (Cowling, 2006). This is 
a prime region for gather large amounts of data on ILI and actual laboratory confirmed cases of 
influenza.  

Our group has tested the effects of environmental and meteorological variables on 
influenza transmission in Hong Kong and two cities in the US (Soebiyanto et al. (2010)). 
However, the differential effect of environmental and meteorological variables on influenza 
types and subtypes has yet to be investigated. In some regions, the differences in temporal 
sensitivity of influenza A and B types can be distinct. Thus understanding the differential 
sensitivity of influenza types and subtypes to the climactic factor will enable a more accurate 
prediction of influenza cases. This in turn may lead to reducing influenza burden as well as 
helping the influenza preparedness efforts. Toward this end, this study is aimed at modeling 
influenza type A and B, as well as subtypes A (H1N1) and A (H3N2) using meteorological and 
environmental factors. The tasks involved include collecting and processing the data needed, as 
well as developing linear and nonlinear models for influenza.  

 
Table 1. Factors involved in influenza transmission 
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Influenza Process Factors 
Impact on influenza process from 

factor increase 

Virus Survivorship 

Temperature  
Humidity  

Vapor Pressure  
Solar Irradiance  

Transmission Efficiency 

Temperature  
Humidity Varies 

Vapor Pressure  
Rainfall  
ENSO  

Air travels and holidays  

Host susceptibility 
Sunlight exposure  

Nutrition Varies 

 
3. MATERIALS AND METHODOLOGY 

Environmental and meteorological data was obtained from ground based stations and satellite-
derived measurements. We obtained data from the Hong Kong Observatory (2003), which gave 
us daily measurements of total rainfall, wind direction, wind speed, air pressure, air temperature, 
dew point, and relative humidity. In addition to ground station measurements, satellite-derived 
data were also retrieved, including rainfall as measured from the Tropical Rainfall Measuring 
Mission (TRMM) and Land Surface Temperature (LST) from MODerate resolution Imaging 
Spectroradiometer (MODIS). TRMM is a collaborative mission between NASA and Japan 
Aerospace Exploration Agency working to monitor and study the tropical rainfall so as to 
improve understanding of water cycle in the climate system. Data was obtained from the 
Tropical Rainfall Measuring Mission (TRMM) Online Visualization and Analysis System 
(TOVAS), all of which contained information for daily, weekly, and monthly accounts of rainfall 
factors. The groups collected data from LST prior to this study. Weather anomalies were further 
calculated in order to get a better idea of the trend of the weather patterns. The environmental 
variables were also smoothed using averages over the span of five points. 

Influenza data were obtained from The Centre for Health Protection (2008), which 
summarizes and monitors the weekly situation of Human Swine Flu and seasonal influenza in 
Hong Kong. Because seasonal infection rates of influenza differ in each region, there is no 
standard number of specimens to be collected and studies from each site. A hospital surveillance 
system is the most effective way to acquire data and specimens that have the influenza-like 
illness. A specimen with an influenza-like illness one with a sudden onset of a fever exceeding 
38 °C, cough or sore throat, and no other symptoms. “As part of the International Health 
Regulations 2005 core surveillance and response capacity requirements, each Member State must 
develop and maintain capabilities to detect, assess, and report disease events nationally and 
internationally to WHO within 48 hours of confirmation” (Ortiz, 2009). In Hong Kong, the 
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number of specimens tested was available, so we were able to use the proportion of positive 
isolates, which is the total specimens tested in that span of time, as part of our analysis. 

The sentinel surveillance data from Hong Kong are provided by a network of General 
Practitioners (GP) and General Outpatient Clinics (GOPC). At the end of each week, the sentinel 
practitioners report the number of consultations with patients with ILI as well as total number of 
consultations (Cowling, 2006).  
 The goal of this project is to model influenza transmission rates using weather 
information and predictions. When analyzing the data, we put it through a series of tests. The 
tests that we administered were: correlation, linear regression, and Neural Network. First we 
found out if any of the environmental variables had any significant linear and nonlinear 
correlation with the flu time series. Finding correlation coefficients helps us measure of the 
strength of linear relationship between variables. When there is no correlation between the two 
quantities, then there is no tendency for the values of one quantity to increase or decrease with 
the values of the second quantity. 

Once we found that their existed a linear relationship between the variables and 
influenza, the next stage was to test Poisson linear regression, which assumes 

 
Where  is the column vector of independent variables on day  with regression coefficients β 

and  is the dependent variable on day  (Tobias, & Saez, 2004). Linear regression has many 

practical uses. We used linear regression to fit a predictive model to an observed set of y and x 
values, in this case, to find a fit between environmental variables and influenza ("Linear 
Regression," 2010). Building off of the correlation tests, we picked the environmental variables 
with the highest correlation to the respective strain of influenza (A or B), and calculated the least 
squares fit. Calculating least squares fit is useful because the least squares approach can be used 
to fit models that are not linear. However, because the data was surveillance information, it 
tended to fluctuate occasionally, leaving us with some inaccurate information, so by smoothing 
the environmental variables, we were able to see the trend of the transmission rates during each 
season. 
 Once we thoroughly tested our data using linear regression, we moved on and influenza 
incidences were modeled and predicted using Neural Network (NN). In a short description of 
NN, it is a process that mimics the networking function of the brain. This artificial brain process 
is made up of interconnecting nodes, which can be used for solving problems without necessarily 
having to create model of a real system by carrying a threshold function such as a sigmoid 
function (Soebiyanto & Kiang) (Picture 1). 
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Picture 1. Neural Network conceptual schematic (from MATLAB) 

 
The nodes are arranged in layers, which are the input, hidden, and output layers. The input layer 
takes the data, applies parameters and weights to the data, and calculates the threshold function. 
The results from the first layer are then sent through the same process again and again depending 
on the number of nodes in the system.  
 In particular, we used the Radial Basis Function Neural Network (RBFNN). RBFNN is 
used for various applications, such as function approximation (Soebiyanto & Kiang). When 
using RBFNN, we limited the number of nodes to 3 in order to minimize the use of parameters 
and to simplify the model. Our inputs for RBFNN included the lagged environmental variables 
up to lag 3, as well as the previous year’s data. The resulting NN model was analyzed and 
evaluated based on the Root Mean Square Error (RMSE) and the best correlation coefficient 
(R²). All calculations, models, and simulations were tested using MATLAB. The data is divided 
into fit and prediction.  

4. RESULTS  

Our first attempt to finding correlations and determinants for influenza involved using Poisson 
Linear Regression. We tested weekly gathered data first. After running tests to verify correlation 
between different environmental variables and the types of influenza, we sorted the most highly 
correlated variables and ran simulations to find out if any of them were possible determinants. 
The combination of variables with the best root mean square error fit for influenza type A 
contained: solar radiation, dew point mean, mean relative humidity, minimum relative humidity, 
all with lag 1, and information on transmission rates and surveillance from 3 months prior. Of all 
the tests and simulations, relative humidity variable seems to be the determinant for Flu A 
(Appendix, Table 3). 
 When testing influenza Type B, the best combination of variables with the best RMSE fit 
is: land surface temperature, mean air pressure, maximum temperature, minimum temperature, 
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all with lag 2, and information regarding surveillance information from the 3 months prior 
(Appendix, Table 3). Minimum temperature seems to be the determinant for Flu B. 
 After testing for Flu A and B, we tested GOPC-Influenza-Like-Illness (ILI) rate, per 1000 
consultation, from General Outpatient Clinics-and GP-ILI rate from General Practitioner. These 
are the records of all influenza like illnesses, so the reports are not confirmed cases of influenza; 
they are the records of patients with the symptoms before the lab results returned positive or 
negative. Results for GOPC reported that land surface temperature (lst) seemed to be the 
determinant. However, these results are from data that yielded lower levels of correlation 
between GOPC and the environmental variables. It seems that lst has an influence on illness, but 
these are not confirmed cases of influenza. When testing GP, lst again seemed to be the 
determinant (Appendix, Table 3).  
 The next step in our testing was to smooth the variables in order to see a better trend in 
our information. We performed the same correlation tests and Poisson Regression with better 
results. 
 Taking from the most correlated environmental variables, with inputs limited to 5, except 
for GP since there are only 3 most correlated variables, minimum relative humidity and land 
surface temperature seemed to be determinants for influenza Type A. The mean relative 
humidity and land surface temperature seem to be a determinant for influenza B, and land 
surface temperature and rainfall appear to be determinants for GOPC and GP (Appendix, Table 
4).  
 Still trying to get a clear trend of the data, we decided to test the proportion of influenza 
types and total specimens collected. The data we have is only from surveillance, and it doesn’t 
reflect the true population data, so we divided the influenza type by the number of total 
specimens, dubbing the influenza types A PROP, B PROP, and POS PROP, where POS PROP is 
the combined confirmed cases of both influenza types A and B. Then we ran Poisson Linear 
Regression simulations. However, it did not seem as though these results were any better than 
the smoothed variables simulations. Determinants for A PROP seemed to be mean air pressure, 
mean and maximum temperature (Figure 1). Determinants for B PROP seemed to be minimum 
temperature and radiation (Figure 2). And for POS PROP, the determinant seemed to be 
minimum temperature (Appendix, Table 5). 
 After finishing the regression simulations without convincing results, we turned to Neural 
Network simulations for better answers. After programming the radial basis function neural 
network to run through all possible combinations of 3 variables, with varying spread and a 
maximum of 3 to 4 nodes, the outcome had a better RMSE fit all around. We kept the maximum 
nodes to no more than 4 in order to limit the number of parameters in the model and to keep the 
model as simple as possible. For these neural network simulations, we are still using weekly data 
for A, B, GOPC, and GP; monthly data for A PROP, B PROP and POS PROP; as well as H1N1 
and H3N2.  
 A PROP seemed to have wind direction as its determinant, however, there is no literature 
confirming that wind direction has caused long distance transmission of influenza, usually the 
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virus dies while on course. So we then did the same process but excluding wind direction, the 
results were not as good, the RMSE rose by about .3 and the R² dropped by about .04, but the 
determinant seemed to be the mean dew point (Figure 1).  

Figure 1 

 

 
The other variables contributing to the RMSE and R² values are total rainfall (lag 3) and 
minimum temperature (lag 2) (Appendix, Table 6). As mentioned earlier, temperature has been 
directly related to aerosol-borne transmission. Rainfall has not been proved to directly affect 
transmission rates of influenza; however, some papers have noted that a number of tropical 
countries observed influenza transmission peaks that coincide with the rainfall season. Both cold 
temperatures and rain can also cause a person to stay indoors, which causes people to crowd 
together, which makes the transmission of influenza much more probable.  

From all the tests on B PROP, there seemed to be no variable that was consistent with 
each test, so there seemed to be no determinant for B PROP (Figure 2) (Appendix, Table 6). 
However, even though it was not one of the three best variables in each test, minimum 
temperature (lag 1) was the most consistent variable that seemed to affect the model. This 
variable could be a direct cause of influenza B transmission. Studies have shown that low 
temperature and humidity have been most influential in aerosol-borne transmission.  

Wind direction and total rainfall seemed to be the determinants for POS PROP. However, 
because there is not much data proving that wind direction has an effect on transmission rates, 
we tested the combinations again without wind direction. The results were not as promising, 
RMSE increase by .4 and R² decreased by .6. Yet total rainfall was still relatively consistent, so 
total rainfall seems to be a determinant of POS PROP (Appendix, Table 8). This makes sense 
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because POS PROP is the combination of confirmed cases of influenza type A and B, and A was 
influenced by rainfall (Appendix, Figure 3). 

Figure 
2

 

 
 When testing cases of H1N1 proportion, mean relative humidity anomaly, sun (lag 1) and 
mean air pressure (lag 3) seem to be determinants. For H3N2, wind direction, sun (lag 1), and 
mean air pressure (lag 2) seemed to have the best RMSE fit, but when adding H3N2 (lag 1) to 
the test variables, the new determinants seemed to be sun (lag 1), air pressure (lag 3), and H3N2 
(lag 1), which also produced a better fit (Figure 5). 
 When testing weekly data for influenza type A, the best combination with the lowest 
RMSE and highest R² values is: max temperature, Information for Type A from the previous 
year (A_t52), and Information for A from the previous 3 weeks (A_t3). However, results for 
influenza Type A tests had sporadic results, thus it seems as though there is not just one 
environmental determinant. When testing weekly data for influenza type B, the best combination 
of variables is: mean air pressure (lag 2), min temperature (lag 3), and Information for Type B 
from the previous 3 weeks (B_t3). Each test seemed to favor some form of temperature as one of 
the determinants, whether it was max, min, with lag 3 or lag 2.  
 Since GOPC had the most hits, it was simulated using RBFNN rather than GP. The best 
combination of variables concerning GOPC is: mean relative humidity, mean relative humidity 
with lag 3, and min temperature with lag 2. GOPC did not seem to have any determinants.  
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Figure 3 

 

5. DISCUSSION 

Influenza is a detrimental virus that causes yearly pandemics, and a pandemic is determined by 
spread of disease, not its ability to cause death. Influenza’s ability to spread easily from person to 
person can cause serious public health and economic problems. In developed countries, 
epidemics can result in high levels of productivity losses. In communities, clinics and hospitals 
can be overwhelmed when large numbers of sick people appear for treatment during peak illness 
periods. While most people recover from a bout of influenza, there are large numbers of people 
who need hospital treatment and many who die from the disease every year (WHO, 2009). 

The information found out from our Linear Regression and Neural Network simulations 
have given us new insights into direct environmental causes of influenza. It seems as though 
wind direction may have some sort of indirect link to the transmission of the disease, even 
though there may not be enough research done to support that hypothesis. Relative humidity, 
temperature and land surface temperature seem to be the most consistent with all types of 
influenza and probabilities. Tests have been done to tests whether or not humidity has a direct 
effect on transmission rates, the results came back positive. Now that we have more information 
on which variables may influence transmission of influenza, we can do more direct tests to 
confirm our assumptions. 
 For all of the simulations, the neural network model does the best job mimicking the data 
and creating forecasts and predictions. For influenza type A, our neural network model of the 
monthly data was the most accurate. This model used mean dew point (lag 0), minimum 
temperature (lag 2) and total rainfall (lag 3) as its determinants. For influenza type B, the models 
using monthly data instead of weekly data proved to be more accurate. For the most part, the 
neural network model for Flu B, which used wind speed (lag 0), maximum temperature (lag 1), 
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and Flu B (lag 2), was accurate when studying and creating a pattern for the data, but was not 
very promising when it forecast predictions. Neural network models seem more accurate than the 
Poisson linear regression models for POS PROP, H1N1, H3N2, and GOPC; however these 
models are still a work in progress.  
 The more data collected for this research, the more accurate the models will become. If 
the sentinel surveillance networks continue to be installed globally then we will have more 
access to accurate and numerous results and information on cases of influenza. If we continue to 
research how environmental factors individually affect influenza transmission, such as previous 
work done with humidity and temperature, we will be more efficient in forecasting and 
predicting future outbreaks.  
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Appendix 

Table 2 

Poisson Regression Weekly Data 

Output Input 
RMSE 

Fit 
RMSE 
Pred. 

R² Fit R² Pred. 

A 

radiation (lag 1) 
mean dew point (lag 1) 
mean relative humidity (lag 1) 
min. relative humidity (lag 2), 
Flu A (lag 3) 

67.80277 92.33076 0.4385 0.01538 

B 

land surface temp. (lag 2) 
mean pressure (lag 2) 
max. temp. (lag 2) 
min. temp. (lag 2) 
Flu B (lag 3) 

15.73687 218.7049 0.54237 0.03051 

GOPC 

rainfall (lag 1) 
land surface temp. (lag 1) 
sunlight (lag 1) 
radiation (lag 1) 
GOPC (lag 3) 

1.41874 1.97455 0.34508 0.12973 

GP 
land surface temp. (lag 1, 2) 
max. temp. (lag2) 
GP (lag 52, 3) 

6.95685 9.76129 0.45611 0.06407 

 

Table 3 

Poisson Regression Weekly Data Smooth 

Output Input RMSE Fit 
RMSE 
Pred. 

R² Fit R² Pred. 

A 

rainfall (lag 1), 
land surface temp. (lag 1) 
evaporation (lag 1) 
max. temp. (lag 1) 
min. relative humidity (lag 1) 

49.33816 86.0695 0.71111 0.00932 

B 

rainfall (lag 1) 
land surface temp. (lag 1) 
cloud coverage (lag 1) 
radiation (lag 1) 
Flu B (lag 3) 

13.72931 171.2856 0.64729 0.04575 

GOPC 

rainfall (lag 1, 2) 
land surface temp. (lag 1) 
radiation (lag 1) 
GOPC (lag 3) 

1.1647 2.0948 0.55886 0.1991 
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GP 
rainfall (lag 1, 2) 
land surface temp. (lag 1, 2) 
GP (lag 3) 

6.45753 13.42246 0.53147 0.00134 

Table 4 

Poisson Regression – Monthly Data 

Output Input 
RMSE 

Fit 
RMSE 
Pred. 

R² Fit R² Pred. 

A PROP 
mean pressure (lag 0, 2) 
max. temp. ( lag 0, 2) 
radiation (lag 0) 

7.54556  7.42197  0.31317  0.17642 

B PROP 

min. temp. (lag 1) 
max. temp. (lag 2) 
mean dew point (lag 1, 2) 
radiation (lag 2) 

2.08084  1.96701  0.47576  0.41211 

POS 
PROP 

mean pressure (lag 0, 2) 
mean temp. (lag 0) 
min. temp. (lag 0) 
evaporation (lag 0) 

8.06854  9.12282  0.36819  0.1447 

 

Figure 4 
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Figure 5 

 

Figure 6 
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Figure 7 

Figure 8 
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