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ABSTRACT 

Scientists are developing new satellite-based maps of various areas all around the world. Previously the attached 
price tag for this process was high, until recently when satellite imagery became freely available.  Now satellite-
based maps are the norm, and scientists are working hard at creating new maps for the Baltimore/Washington D.C. 
region. The focus of this project is on the Chesapeake Bay Watershed (CBW) region and utilizing Landsat data to 
determine the percentage of pervious/impervious cover of the area utilizing ENVI software. The Landsat data will 
be 'stacked' and cloud-free; recent images (2009 to present) were mosaicked together and analyzed using training 
sites created from Quickbird images provided by the National Geospatial Intelligence Agency (NGA). The 
Quickbird images will also be recent images to coincide with the Landsat images. Quickbird images were subsetted 
randomly, classified as 0 – pervious or 1 - impervious, aggregated, and then applied to the Landsat images via the 
cubist regression tree algorithm already developed. This process will involve the utilization of LEADAPS software 
for atmospheric correction as well. The overall percentage of pervious/impervious cover of the Landsat images 
should be relational to that of the Quickbird training sites. 
 
INTRODUCTION 
 
 New satellite-based mapping is becoming increasingly more popular now that imagery 
data, particularly Landsat data, is now free. Prior to free imagery, costs were a large limiting 
factor when it came to satellite-based mapping and along with the size of the area that could be 
mapped. Commercial satellite imagery is now also available; some of these commercial satellites 
have a much more frequent temporal resolution, which allows for more observations over time. 
With these advances national and global wide mapping efforts are taking place, such as that done 
by Masek, J.G., et al. (2006a) mapping North American surface reflectance values over time 
with Landsat; studies such as these can allow researchers to map and monitor land cover such as 
tree canopy or crop coverage of specific areas based on surface reflectance values and signatures. 
Being able to map land cover on the global scale leads to a greater understanding of our ever 

changing planet and the impact humans have.  
 The CBW (Figure 1) is one such large area of 
interest when it comes to new satellite-based 
mapping; the watershed is the largest estuary in the 
United States and holds about 80 giga-tons of water 
(Hall 2010). It is a government initiative to better 
monitor and understand the intricate web the CBW 
supports upon realization of the large amounts of 
pollutants present. Much of the change in the CBW 
came about during the 18th and 19th centuries when a 
conversion to agriculture took place followed by 
expansive amount of commercial and residential 
development on what was once a very homogenous 
area of forest (Jantz, P., S. Goetz, and C. Jantz. 2005). 
Impervious land cover, such as urban and residential 
areas, is an important focus for the region; the more 
impervious cover, the higher the possibility of 
flooding, pollution from runoff, and greater amount of 
runoff. 

 Authors such as Jantz, Goetz, and C. Jantz (2005) have focused studies on the CBW as 
well, estimating the extent and rates of urbanization and the impacts this land use change 
development has on the area. Along with a study by Masek, J.G., et al. (2008), this focused on 

Figure 1: Leaf off Landsat 5 TM mosaic of the 
Chesapeake Bay Watershed. Images acquired from 
winter 2009 – 2010. 
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forest disturbance in North America utilizing decadal Landsat data, for which the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS) was developed. It was to 
provide a robust way for processing large quantities of remote sensing data in order to monitor 
forest change analyses (Masek, J.G., et al. 2008).  Studies such as these utilized Multi-Resolution 
Landcover Consortium (MRLC) land cover map, Landsat 7 Enhanced Thematic Mapper (ETM+) 
images, and GeoCover images derived from Landsat data; the focus on this paper is to take this a 
step higher and utilize high resolution imagery as training sites to classify Landsat imagery 
which, in theory, will allow for a more accurate classification of the Landsat imagery.  

Studies such as those by Huang, C. et al. (2001) have utilized Landsat 7 ETM+ high 
resolution data to monitor tree canopy density over large areas although the high resolution data 
utilized were digital orthoquads (DOQ) instead of high resolution satellite imagery. Unlike a 
satellite data, DOQs are computer generated images that are created by utilizing aerial 
photography, usually taken from an airplane. A DOQ is just a picture map where as a satellite 
image provides you with bands which in turn provide insight to the land cover types based on 
reflectance values. A method utilizing high resolution imagery focuses (focuses) on the 
percentage per pixel (ppp) of impervious cover over the CBW could lead to annual monitoring of 
land cover types versus those over a span of 10+ years, which in turn could lead to better 
knowledge of change throughout the area. 
 
DATA AND METHODOLOGY 
 
Study Area 
 

The CBW is the largest estuary in the United States, stretching across 6 states, totaling 
more than 64,000 square miles, and provides a home for a vast number of species, both plant and 
animal (CBP 2008). Recently, an initiative was put forth by the CBP to conserve and preserve 
the CBW. 
 
Data 
 

Landsat-5 Thematic Mapper (TM) images (Figure 2) were the 
primary data source for determining the percentage of 
pervious/impervious cover for the CBW. Landsat-5 TM was chosen 
over Landsat-7 ETM+ due to the failure of the scan line corrector on 
the Landsat-7 satellite in 2003. This failure leads to gaps within the 
Landsat-7 imagery that need to be corrected before image analyses 
can take place. Therefore when wanting to make inferences of 
current land cover or change detection, usage of Landsat-5 saves 

time and is less prone to error that lies 
within the correction of Landsat-7 images. 
Spatial resolution of Landsat-5 TM is 30 
meters, which is sufficient enough when looking at a large area such 
as the CBW, and the data is quantized to 8-bits. Landsat-5 TM data 
was acquired from the United States Geological Survey free of charge 
from GLOVIS. 

Quickbird data (Figure 3) was utilized as the training data to 

Figure 2: Band 4 Landsat 5 TM image 
acquired on April 26th, 2010. 

Figure 3: Sample Quickbird 
scene acquired April 11th, 2006. 
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be applied to the Landsat-5 TM data. Quickbird is a commercially owned satellite with very high 
spatial resolution, four 2.44 X 2.44 m multispectral bands and a 0.62 X 0.62 panchromatic band 
(Jensen, 2005). The four multispectral bands for Quickbird are blue, green, red, and near-infrared 
(nir). Interestingly, the Quickbird satellite is a non-sun-synchronous satellite, and the data is 
quantized to 11-bits. Quickbird data was acquired from the National Geospatial Intelligence 
Agency (NGA).  
             
    

Methodology 
 

The methodology for this study was largely based off the methods utilized by Yang 
(2003). Once the Quickbird imagery was preprocessed, methodology took place in three major 
steps: (i) Image preprocessing (ii) Training Data Creation and Data Processing (ii1) Regression 
Tree Modeling and Spatial Application (Appendix A).  
 
Image Preprocessing   
 

Landsat TM was preprocessed for atmospheric correction utilizing the Landsat 
Ecosystem Disturbance Adaptive Processing System (LEDAPS). The Landsat TM images are 
atmospherically corrected to surface reflectance to help researchers track land-cover changes 
more easily using the GeoCover data (Masek, J.G. et. al. 2006a). LEDAPS is in-house software 
developed at the National Aeronautics and Space Administration (NASA) Goddard Space Flight 
Center (GSFC). 
 Quickbird preprocessing consisted of creating 20 small 2000 x 2000 pixel subsets of the 
10 original images obtained from the NGA. This was done to speed up the preprocessing and 
processing of the training data. Once subsetted, the multispectral and panchromatic scenes were 
intertwined using Graham-Schmit pan-sharpening. This created one image of four bands (blue, 
green, red, and nir) overlain a “sharper” panchromatic image; this provides more detail when 
classifying an image.  Lastly, the Quickbird data was re-projected to match the projection of the 
Landsat TM data.  

 
Training Data Creation and Data Processing 
 

Quickbird training data was created by utilizing Iterative 
Self-Organizing Data Analysis Technique (ISODATA), a 
method of unsupervised classification, which is a modification of 
the k-means clustering algorithm. The difference here is that 
instead of just making two passes through the dataset, ISODATA 
makes a large number of passes until specified results are 
obtained such as 10 iterations and 20 classes in this instance. 
Default values were assumed for the rest of the criteria such as 
maximum standard deviation, split separation value, etc. Using 
the overlay tool, the 20 classes were then identified and 
eventually broken down into two classes; pervious and 
impervious (Figure 4). Once the training data is broken down 
into pervious and impervious, the data needs to be changed from 
integer to float in order to depict a percentage value in the data 

Figure 2: Top image is an image 
classified to 20 classes. Bottom image 
is of 2 classes; area is GSFC, 
Greenbelt, MD. 
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field. This is done by choosing band math and applying the equation FLOAT(B1) to each image. 
After the band math is applied, the training data then needs to be aggregated to 30 meters by 30 
meters to overlay properly with the Landsat TM images. This is done by resizing the data, 
utilizing pixel aggregate. The resulting image will look fuzzy but it is to be expected. Once this 
is done, training data are then rectified using image to image analyses and finally layer stacked 
with the Landsat TM images (Figure 5). 

 

    
Figure 3: Image progression from Landsat 5 TM scene and aggregated Quickbird data to the layer stacked image. 

Regression Tree Modeling and Spatial Application 
 

Our training data is a continuous data set between 0 and 1 and classified as percentage 
per pixel. A regression tree algorithm is then applied to the layer stacked image which is 
composed of the Landsat TM bands 1-5, 7, and Quickbird training data band. The regression tree 
algorithm produces rule-based models for prediction of continuous variables and can account for 
a nonlinear relationship between predictive and target variables (Yang 2003). Much like Yang 
2003, a regression tree algorithm from Cubist, commercial software available free from 
http://rulequest.com. Cubist utilizes the average error and relative error along with other 
statistical measures to evaluate model performance (Yang 2003); input data for Cubist must be in 
simple text format and there must be a .data and a .names file present for the regression tree to 
run (Appendix B). The regression tree algorithm is used to develop an initial model to apply to a 
larger area. 

The initial model from the regression tree model will then be applied to the CBW as a 
whole, which consists of 18 Landsat TM images. The model is incorporated into the ENVI 
software and used as an unsupervised classification of the larger Landsat Images. The final 
classified Landsat images are then mosaicked together to provide an estimate of the total 
percentage of impervious cover.  

 
RESULTS 
 
 Simplifying things, the training data matched up well with the Landsat imagery depicting 
areas of impervious and pervious coverage; showing properly processed, high resolution satellite 
imagery can provide a decent training site for lower resolution images. Our models also 
depicted; although as with all satellite-based mapping, there will be some underlying error. The 
average error ranges were from roughly 5% to 12%, and the correlation coefficients percent 
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range, signifying a low average error between actual and predicted variables. Relative error also 
stays below one for all tests run; a relative error above one would indicate that the model created 
would not be very useful (Figure 6). It was also noted that the more training sites incorporated 
into the regression tree, the worse the output of average error and relative error became, yet these 
changes were minimal. The factor that can account for this will be discussed in the sources of 
error section; Yang (2003) also had a similar result of minimal changes which suggests the use of 
fewer input variables. 

When applied to a subset of 
Landsat TM imagery, results were 
fairly surprising with a correlation 
coefficient of .97 (Appendix B); 
when cross-validated though, the 
correlation coefficient dropped to as 
low as .93 depending on the amount 
of cases used. These findings are 
still acceptable in that our actual 
value and predicted values agree 
more than 90% of the time.  

It should be noted that the 
Landsat TM subset estimated was 
from row 15 path 34. This was 
chosen because much of the training 
site data was located within this 

image; the full Landsat image was unable to be used due to the large size of the data.  Based on 
the knowledge of these outputs though, one could assimilate that the errors and correlation 
coefficient would degrade slightly when applied to the full CBW but still within a range of 
acceptability that would allow us to conclude that our estimate of impervious coverage would be 
accurate.  

 
Sources of Error  
 

When utilizing satellites for mapping, one must take into account the various sources of 
error that can be produced. First and foremost, one large 
source of error lies within rectification; if two images are 
not properly rectified, layer stacking will become early 
impossible for aligning the images properly.  When images 
are obtained, it is pertinent that the research must take note 
of the projection of the images that will be used. Utilizing 
images that are in the same projection could easily save time 
and effort as well as not add another source of error. 
Rectification is done in order to make data planimetric, 
which removes error found within most commercially 
available remote sensor data (Jensen 2005).  Ground control 
points are commonly used when rectifying; although at 
times, images need to be rectified on a pixel to pixel basis, 
which, if not done properly, could produce more error.  

Figure 4: Sample results from modified regression tree analysis of the data.

Figure 5: Example of artifact error in Quickbird 
image; artifact is white stripe seemingly running 
parallel to the road. 
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Another source of error lies within the pansharpen Quickbird training sites; when running 
classifications on the pansharpen imagery, it was noted that on occasion the classifications would 
not match up to the features within the image.  It was as if the classification was reading just the 
multispectral image or the panchromatic image, instead of the pansharpen image which lead to 
artifacts within the image such as, a classified road nowhere to be found (Figure 7). There were 
also spots on the images where the processes seemed to not work, albeit small, these spots were 
still mis-classified (Figure 8). With the Quickbird imagery, subsetting was also preformed in a 
specific order with the panchromatic image subsetted first and then the multispectral imagery 
subsetted based on the panchromatic. This was done because when wanting a specific sized 
training site, 2000 pixels by 2000 pixels for example, if the multispectral imagery was subsetted 
first, the size of the training site was off when subsetting the panchromatic image.  

Lastly, error was also noted 
with the Landsat 5 imagery in that 
there was noise along the end of the 
images that disrupted the 
classification.  There was also a 
large gap between the various bands 
within the imagery which also led 
to some mis-classifications. This 
was easily dealt with through by 
just clipping off the edges of the 
imagery; the scenes overlap enough 
where this is possible. As 
mentioned previously, results 
suggested that for regression tree 
models, the use of fewer variables 
was suggested at from the results. 

This error could arise from having two people classify the training sites separately without strict 
guidelines of the process that both would like to take. Slight differences in the classification 
methods between two people can also account for sources of error when combining the training 
site data. Imagery analyses are also somewhat subjective; what one person may classify as 
pervious, another may classify as impervious. Take a well traveled dirt road or manmade ponds, 
for example. Other minor sources of error could possibly arise from imagery that was not 
properly processed, forgetting to assign wavelengths to images that need pansharpening, not 
utilizing enough classes, or shadows overlapping pervious/imperious cover.  
 
CONCLUSIONS 
 
 Similar to Yang 2003 we were able to develop a method of mapping impervious surfaces 
as continuous variables, ppp, using both low and high resolution data. Our results also show that 
software is capable of developing a method to accuracy and consistently map land cover 
features, in our case impervious percentage of the CBW. A future endeavor of this study is field 
validation work, which will be done at a later date, to truly estimate the accuracy of the method. 
One field validation work took place locally just to be sure that equipment worked. The data for 
the local area was accurate although only one pixel was completed due to time constraints; 
therefore, no conclusion can come from that. Overall, the final product will yield numerous 

Figure 6: Example of noise data and mis‐classification of Quickbird imagery.
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applications for the CBW, such as comparative studies of the hydrology of the land in 
comparison to elevation and impervious coverage. This method could also be applied to the land 
cover types such as the seasonal change of vegetation within the area and tree canopy cover. Bird 
migration patterns could also be applied, and therefore, one could make inferences about where 
water fowl and other migratory birds could possibly inhabit.  

Numerous applications can also arise from land cover percentage analyses such as this, 
not only on a local scale but a global scale as well. Studies by Masek, J.G. et al. (2006a) indicate 
that free Landsat data classifications can also be applied to the United States and incorporated 
with MODIS data, although utilizing high resolution data as training sites for areas as large as 
these would be somewhat time consuming. The results via cubist suggest though that training 
sites from high resolution data can be utilized to classify lower resolution images such as 
Landsat TM, though the accuracy depends on the amount of care taken when classifying the 
training image. So hypothetically with well dispersed training sites of high resolution data 
throughout the United States, anything mapping wise at least, is possible. With a method such as 
this, annual mapping could take place, no matter what the area of focus, since much of the 
process is automated by ENVI and Cubist software packages. ENVI also provides an extension, 
ENVI EX, which would allow a user to create a classified image by rules; these rules can then be 
saved and applied to subsequent imagery as it is gathered. The only downfall is that the imagery 
would have to be of a specific area, such as the CBW, or the model may not have similar outputs 
for a different region. For example, if utilizing a rule classification for the United States, the soils 
and ground in Utah will differ spectrally from those in the more saturated areas such as Florida.  
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Appendix A 
 
 Logical model of methodology developed through the study. 
 
  Quickbird (High 

Resolution Imagery) 

Reproject and created a 

2000 pixel by 2000 pixel 

subset for training site 

use (20 training sites 

needed) 

Classify pansharpen images to 

impervious/pervious cover classes 

Define band centers and pansharpen 

multispectral bands with 

panchromatic band 

Aggregate data to 30 meter resolution 

Rectify training sites to 

Landsat TM scenes 

Landsat 5 TM (Low 

Resolution Imagery) 

Apply atmospheric correction

Layer‐stack Quickbird rectified, aggregated 

images with Landsat scenes

Save layer‐stacked image data as an 

ASCII file 

Convert ASCII file into a simple TXT 

file for notepad 

Convert TXT file into a .data file for 

regression tree and create a .names 

files defining the variables 
Import the .data file into Cubist and 

run using rule based

Take model created from previous step 

and utilize it as a .model file for the 

Landsat 5 TM scenes

Take model created from previous step 

and reformate to a language, such as IDL, 

to be utilized in ENVI

Take reformatted model and classify the CWB 

Landsat scenes within ENVI

Observe final output and 

validate 
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Appendix B 
 
Example .data format and .names format for Cubist 
 

                                   
        .data file example           .names file example 
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Appendix C 

Partial example of output model from Cubist software to be applied to Landsat 5 TM scenes within ENVI 
 
Cubist [Release 2.07]  Fri Aug 06 02:00:36 2010 
 
    Options: 
        Use 85% of data for training 
 

 
    Replacing unknown attribute values: 
        `Band1' by 71.7 
 
Read 7189 cases (7 attributes) from Cubist(6sites).data 
 
Model: 
 
  Rule 1: [74 cases, mean 0.02117, range 0 to 0.1866, est err 0.02537] 
 
    if 
        Band1 <= 89 
        Band2 <= 48 
        Band3 > 54 
    then 
        Band Agg = 0.30556 + 0.008 Band7 - 0.00367 Band5 - 0.007 Band1 
                   + 0.00184 Band4 + 0.0024 Band2 
 
  Rule 2: [3031 cases, mean 0.02140, range 0 to 1, est err 0.02230] 
 
    if 
        Band7 <= 23 
    then 
        Band Agg = -0.00775 + 0.0015 Band7 - 0.00022 Band4 + 0.0007 Band2 
                   - 0.0004 Band1 + 0.00015 Band5 
 
  Rule 3: [261 cases, mean 0.03532, range 0 to 0.417, est err 0.04016] 
 
    if 
        Band1 > 70 
        Band1 <= 78 
        Band5 <= 57 
    then 
        Band Agg = -0.48472 + 0.0103 Band7 - 0.0045 Band5 + 0.0081 Band1 
                   - 0.0056 Band3 + 0.00222 Band4 
 
  Rule 4: [110 cases, mean 0.05941, range 0 to 0.6461, est err 0.06030] 
 
    if 
        Band1 > 74 
        Band2 <= 37 
        Band4 <= 75 
        Band5 > 77 
        Band7 > 28 
        Band7 <= 60 
    then 
        Band Agg = 1.79324 - 0.0559 Band2 - 0.01148 Band5 + 0.0203 Band7 
                   + 0.005 Band4 + 0.0079 Band3 - 0.0012 Band1 
 
  Rule 5: [187 cases, mean 0.06569, range 0 to 0.6597, est err 0.06170] 
 
    if 
        Band2 <= 37 
        Band4 <= 75 
        Band5 > 57 
        Band7 <= 28 
    then 
        Band Agg = -0.16288 - 0.01227 Band5 + 0.0162 Band7 + 0.0153 Band3 
                   - 0.0173 Band2 + 0.00382 Band4 + 0.0063 Band1 
 
  Rule 6: [67 cases, mean 0.06987, range 0 to 0.6756, est err 0.04760] 
 
    if 
        Band1 > 70 
        Band3 <= 54 
        Band4 > 123 
    then 
        Band Agg = -0.53359 + 0.011 Band1 - 0.00328 Band5 + 0.0029 Band7 
                   + 0.00023 Band4 + 0.0003 Band3 
 
  Rule 7: [1271 cases, mean 0.08265, range 0 to 0.9757, est err 0.07872] 
 
    if 
        Band1 <= 70 
        Band7 > 23 
    then 
        Band Agg = -0.32195 - 0.00295 Band5 + 0.0041 Band7 + 0.0049 Band1 
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  (Appendix C cont.)            
 

      + 0.005 Band2 
 
  Rule 8: [72 cases, mean 0.08892, range 0 to 0.8742, est err 0.09424] 
 
    if 
        Band1 > 70 
        Band1 <= 72 
        Band3 <= 54 
        Band4 > 88 
        Band4 <= 123 
        Band5 > 106 
    then 
        Band Agg = -0.30825 - 0.00972 Band5 + 0.0129 Band7 + 0.00397 Band4 
                   + 0.0047 Band1 + 0.0047 Band3 - 0.0018 Band2 
 
  Rule 9: [302 cases, mean 0.11207, range 0 to 0.9382, est err 0.10436] 
 
    if 
        Band1 <= 89 
        Band2 > 37 
        Band4 <= 75 
        Band5 > 82 
    then 
        Band Agg = -0.14806 - 0.01194 Band5 + 0.0134 Band7 + 0.0167 Band3 
                   + 0.0006 Band1 + 0.00024 Band4 
 
  Rule 10: [73 cases, mean 0.12972, range 0 to 0.7071, est err 0.09858] 
 
    if 
        Band1 > 70 
        Band3 <= 39 
        Band4 <= 88 
        Band5 > 92 
    then 
        Band Agg = -2.05484 + 0.01637 Band4 + 0.00841 Band5 
 
 Evaluation on training data (7189 cases): 
 
    Average  |error|            0.07266 
    Relative |error|               0.42 
    Correlation coefficient        0.82 
 
 
        Attribute usage: 
          Conds  Model 
 
           71%    97%    Band7 
           58%    90%    Band1 
           36%    78%    Band4 
           27%    97%    Band5 
           21%    43%    Band3 
           17%    77%    Band2 
 
 
Evaluation on test data (1269 cases): 
 
    Average  |error|            0.08121 
    Relative |error|               0.47 
    Correlation coefficient        0.77 
 
 
Time: 0.4 secs 

 


