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Abstract 
 

 The GPM satellite will include a dual-frequency radar to make more accurate precipitation 

measurements. By transmitting at two frequencies, the satellite will measure the dual frequency ratio in 

addition to the return power of both frequencies. The dual frequency ratio and the return power will allow a 

backwards recursion algorithm to calculate certain parameters of the drop size distribution. The problem 

with using two high frequencies is that the signals become attenuated. Although the nonlinear equations 

create sources of unknown error in the algorithm’s output, they do account for the attenuation while 

calculating drop size distribution parameters. There are two main focuses of this study. One focus is to 

determine the reason for the errors we observe in the output and to create solutions to eliminate those 

errors. The second focus of this study is to expand the algorithm to include the other precipitation phases 

such as snow and melting layer.  



1. Introduction 

 

The Global Precipitation Measurement (GPM) mission is aimed towards 

obtaining more accurate data from spaceborne weather radar and increasing the types of 

information that can be retrieved. The GPM satellite, which is to be launched in 2013, 

will accomplish these goals by means of dual frequency radar. Currently, single 

frequency radar is able to observe the intensity and evolution of storms by measuring the 

reflectivity factor, Z, and calculating the precipitation rate, R, but the method is not 

perfect. The theory used to determine R from Z requires more information than what 

single frequency radar can provide, and has resulted in a number of Z-R relationships, 

each describing a different precipitation profile. The general form of the Z-R 

relationships is  

 

Z = R  
 

In order to decrease the variability that different meteorological conditions create, 

dual frequency radar transmits on bands that allow for Mie scattering, instead of Rayleigh 

scattering. Mie scattering occurs when the wavelength of the band is comparable in size 

to the particle, and Rayleigh scattering occurs when the wavelength is much larger than 

the particle. Single frequency ground-based radars usually transmit on the S (2 to 4 GHz) 

or C (4 to 8 GHz) band. The radar on the Tropical Rainfall Measurement Mission 

(TRMM) operates at Ku (13.8 GHz) band. For the most part, the Rayleigh approximation 

is valid for all three bands. If Mie scattering occurs at Ka band or both the Ku (13.6 GHz) 

and Ka (35.5 GHz) band, then certain drop size distribution (DSD) parameters can be 

derived from the reflectivity factors in a way that can not be determined by single 

frequency radar. However, a problem with using higher frequencies is that the attenuation 

of the signal increases.   

 

A backward recursion algorithm is used to account for the attenuation at the Ka 

and Ku band, while it calculates the DSD parameters from the measured reflectivity 

factors. This algorithm is prone to error because it uses nonlinear equations to account for 

the different variables and to correct for attenuation. The main goal of this study is to 

discover the sources of error in the algorithm and to expand the algorithm to account for 

different meteorological conditions. 

 

 

2. Background 

 

a. Gamma distribution of particle size 

 

Raindrops, snowflakes, and other meteorological particles have drop size 

distributions that are characterized very well by the Gamma distribution. The Gamma 

distribution is  

 

N(D) = N0D
μe D

 



where D (mm) is the drop diameter, N (m
-3

 mm
-1

) is the number of drops with a certain 

diameter per unit volume; this quantity is often referred to the drop size distribution 

(DSD). The N0 (m
-3

 mm
-μ-1

) is the coefficient of the DSD, and μ is the shape factor of the 

distribution. In order to compute N(D), it is convenient to define the quantity NT (m
-3

), 

which is the number concentration per unit volume. The NT can be obtained by 

integrating the DSD from zero to infinity:  

 

NT = N(D)dD
0

=
N(D)

n(D)  

 

where 

 

n(D) =
μ+1Dμe D

(μ +1)  

 

The n (mm
-1

) is known as the normalized size distribution. The  or Gamma function in 

the n is defined by  

 

(x) = t x 1e tdt
0

 

 

For integer values of μ, the  function can be written as a factorial:  

 

(μ +1) = tμe tdt
0

= μ! 

 

If we rearrange the solution of the integral, N becomes 

 

N(D) = NTn(D)  

 

or 

 

N(D) =
NT

μ+1Dμe D

(μ +1)  

 

The quantity  can be described in two ways. One way is to describe  in terms 

of D0 (mm), which is the median mass diameter. More specifically, the median mass 

diameter is the diameter that divides the drop size distribution into two equal parts, each 

containing half of the total water content. The expression for  in terms of D0 is 



=
3.67 + μ

D0
 

 

The second way to describe  is in terms of Dm (mm) or the mean diameter. The mean 

diameter is actually the ratio between the fourth and third moment of the DSD. 

 

 

Dm =

D4N(D)dD
0

D3N(D)dD
0

 

 

The expression for  in terms of Dm is 

 

=
4.00 + μ

Dm
 

 

b. Relation between radar and precipitation measurements 

 

The radar equation relates the return power, which is the physical quantity 

measured by the radar, to the measured reflectivity factor, which is associated with the 

DSD parameters described above. The radar equation is  

 

Pr =
CK

2
Zm

r2  

 

where Pr is the return power, C is the radar constant, which depends on the specifications 

of the radar, K is the dielectric factor of water, Zm (mm
6
 m

-3
) is the measured reflectivity 

factor, and r (km) or range is the distance from the radar. The radar equation helps to 

determine NT in the algorithm, however D0 must be found before NT can be calculated.  

 

The method to solve for D0 and NT will be described in more detail in the 

algorithm section, but there are several relevant equations to the algorithm that will be 

described here. One of these equations describes the Zm in terms of the true reflectivity 

factor Z (mm
6
 m

-3
) and the attenuation A:   

 

Zm (r, ) = Z(r, )A(r, )  

 

Another relevant equation that describes the true reflectivity factor is  



Z(r, ) =
4

5K
2 b ( ,D)N(D)dD
0

 

 

where  (mm) is the radar wavelength and b (mm
2
) is the backscattering cross section. If 

the number concentration and the normalized size distribution are substituted in for the 

DSD, then  

 

Z(r, ) =
4

5K
2 NT b ( ,D)n(D)dD

0

Z(r, ) =
4

5K
2 NT Ib ( , )

 

 

The Ib (mm
7+μ) is the backscattering integral equation and can be explicitly described as  

 

Ib ( , ) = b ( ,D)n(D)dD
0

 

 

The Ib is important because it relates to a physical quantity measured by the radar, the 

dual frequency ratio (DFR). The definition of the DFR is  

 

DFR =
Z(r, 1)

Z(r, 2)
 

 

The DFR is related to the Ib by the equation 

 

DFR =
Ib ( 1, )

Ib ( 2, )
 

 

The DFR allows the algorithm another measured physical quantity other than the return 

power to calculate the DSD parameters. 

 

c. Attenuation 

 

The presence of attenuation complicates the radar retrieval because it accumulates 

and becomes larger as the signal propagates through the storm. Atmospheric gases, 

clouds, snow, rain, and other hydrometeors can cause attenuation. For signals transmitted 

at Ku and Ka-bands, the attenuation by gases, clouds, and snow is usually negligible, but 



the attenuation from the melting layer and the rain needs to be taken into account. The 

attenuation that reduces Z to Zm can be expressed as  

 

A(r, ) = e
0.2 ln10 k( ,s)ds

0

r

 

 

where k (dB km
-1

) is attenuation coefficient, which describes the loss in the signal’s 

intensity due to scattering and absorption by hydrometeors. To determine attenuation 

coefficient, the extinction cross section e (mm
2
) must be multiplied by the DSD and 

integrated over all sizes. The equation for k is  

 

k( ) = e ( ,D)N(D)dD
0

 

 

If the number concentration and the normalized size distribution are substituted in for the 

DSD, then 

 

k( ) = NT e ( ,D)n(D)dD
0

k( ) = NT Ie ( , )
 

 

where Ie (dB mmμ+1
 m

3
 km

-1
) is the extinction integral equation. The Ie will become 

critical in calculating the attenuation at each range gate.  

 

Ie ( , ) = e ( ,D)n(D)dD
0

 

 

 

3. Data Retrieval Program 

 

a. Main program (Robert Meneghini and Liang Lao wrote the program.) 

 

 The data retrieval program used to determine the DSD parameters employs a 

backwards recursion algorithm to account for the attenuation at a specific height, while 

calculating the parameters of the drop size distribution (D0, NT) at that height. 

Conventional radars operate by transmitting a short pulse of length  and then receiving 

the power that is backscattered to the antenna. A particular range gate corresponds to the 

time delay between transmission and reception and where the gate length, h, is equal to 

c /2 where c is the speed of light. If the full range within the atmosphere is divided into n 

such gates the program can calculate D0, NT, and specific attenuation for each of the 



gates. At the last or nth gate, closest to the surface the attenuation will be at maximum. 

The first gate is the gate closest to the radar and is known as gate zero. At gate zero, there 

is no attenuation. The top of a storm is considered gate zero in practice because the 

attenuation accumulated by the atmospheric gases and other clouds are negligible. Either 

way, the first gate should have no attenuation.  

 

 

 The program proceeds through the steps describe below to find the DSD 

parameters and the specific attenuation at each gate. 

 

1. Opens the file containing the experimental or simulated data at both frequencies. 

Experimental data was retrieved by dual frequency radar on an airplane. Also, a 

separate program can create simulated data by assuming a D0 and a NT and 

calculating the Zm at each range gate.   

 

2. Opens the look-up tables for both frequencies. A separate program creates the 

look-up tables at a specific frequency and precipitation with a constant μ, a 

constant temperature, and a constant elevation. The table consist of Ib and Ie 

values for 700 D0 values from 0.2 mm to 4.0 mm.  

 

3. Runs the backward recursion algorithm.  

 

4. Outputs a data file containing the D0, NT, and rain rate R at every range gate.  

 

b. Backwards Recursion Algorithm 

 The recursion subroutine makes some assumptions, while it calculates the DSD 

parameters. One assumption is that μ, the shape parameter of the distribution, is a 

constant through all the range gates along the radar beam. Another assumption involves 

the total path-integrated attenuation (PIA) or the attenuation out to the nth gate. There are 

two methods to approximate the PIA. One method is the surface reference technique, 

which estimates the total PIA by comparing the surface return of a precipitation-free area 

to the surface return within the storm. If the surface cross sections are the same, then the 

ratio of these two measurements is equal to the total PIA. The other method is the soft 

constraint method, which assumes a range of D0 values at the last gate and uses those 

assumed values to calculate the PIA. The shortcoming of this method is that the data 

retrieval program will produce multiple solutions, one for each assumed D0 value. A third 

assumption is that the DFR as a function of D0 does not change with temperature or that 

the temperature change with the height is known.  

 

 The steps below describe the backwards recursion algorithm and the details at 

each step. 

 

1. For gate n, calculate the Zm from the Pr for both frequencies by rearranging the 

radar equation.  

 



Zm (rn, ) =
r2Pr
CK

2  

 

2. Determine the DFR with the Zm and the PIA approximation for both frequencies. 

 

DFR =
Z(rn , 1)
Z(rn , 2)

DFR =

Zm (rn , 1)
A(rn , 1)

Zm (rn , 2)
A(rn , 2)

 

 

3. Create a polynomial fit of the DFR as a function of D0, and find the D0 for gate n. 

The DFR as a function of D0 is known, which is why it can be fit to a curve. The 

figure below shows the function with different μ values. 

 

Figure 1 

 
 

4. Search the look-up table for the D0 that corresponds to the estimated DFR. If the 

D0 found by the fit does not match exactly with any of the D0 values found in the 

table, then use a linear interpolation to determine the D0 value. The look-up table 

will also provide the Ib and the Ie for the last range gate. 



5. Determine  from the calculated D0 value and the set μ values. 

 

=
3.67 + μ

D0
 

 

6. Calculate NT by rearranging the equation for the true reflectivity factor. All of the 

values needed to calculate the NT are either known or set constants.  

Z(rn, ) =
4

5K
2 NT Ib ( , )

NT =

5K
2

4

 

 

 
 

 

 

 
 

Zm (rn, )
A(rn , )Ib ( , )

 

 
 

 

 
 
 

 

7. Find the specific attenuation at gate n with the values for NT and Ie. 

kn ( ) = NT Ie ( , )  

 

8. Determine the attenuation at gate n-1 with the specific attenuation at gate n.   

A(rn 1, ) = e
0.2 ln10h k( ,s)ds

0

rn

A(rn 1, ) = e
0.2 ln10h kPIA ( ,s) kn ( ,s)[ ] ds

0

rn  

 

9. Repeat steps 1 through 7 for gate n-1 and use the attenuation at gate n-1 instead of 

the PIA approximation. 

 

10. Determine the attenuation at gate n-2 with the specific attenuation at gate n-1. 

A(rn 2, ) = e
0.2 ln10h kPIA ( ,s) kn ( ,s) kn 1 ( ,s)[ ] ds

0

rn

 

11. Repeat steps 9 and 10 until the D0 and NT at each range gate are found. 



4. Discrepancies in the DFR 

 

a. The Shape Factor, μ 

    

 The DFR as a function of D0 is not the same for all values of μ. This can be seen 

in Figure 1. To check how μ changes the solutions produced by the data retrieval 

program, the simulated data set is created first with a specific μ value, usually μ equal to 

two. Then the program is executed with different assumed μ values. From Figure 1, we 

can determine how the difference between the actual μ of the simulated data and the 

assumed μ in the program will affect the solutions. The DFRs show us that if the actual μ 

is greater than the assumed μ, then the D0 values are underestimated and the N0 values 

are overestimated. This can be seen in Figure 2a, where the black line is the correct 

solution and the colored lines are the multiple solutions produced by the soft constraint 

method. The DFRs also show us that if the actual μ is less than the assumed μ, then the 

D0 values are overestimated and the NT values are underestimated. This is illustrated in 

Figures 2c and 2d. Figure 2b just shows us the solutions for the control case, where the 

assumed μ equal to the actual μ.  

 

 An interesting side note is that rain rate R is not over or underestimated. The 

reason behind this is that the D0 values are changing inversely to the NT values. Thus, the 

change in D0 and the inverse change in NT leaves R relatively unaffected.  



Figure 2a 

 



Figure 2b 

 



Figure 2c 

 



Figure 2d 

 
b. The Dielectric Constant, K 

 

 The dielectric constant can be calculated theoretically as function of frequency or 

can be approximated by the value 0.93. Either convention can be used in the calculation 

of the DFR, but there is an offset between the DFRs of the two conventions. The DFRs 



are shown in Figure 3. While there is a difference in the DFRs of the two conventions, 

the data retrieval program could use either convention without significantly impacting the 

solutions.  

 

Figure 3 

 

 



c. The Air Temperature 

 

 Previously, we thought that there would very little change in the DFRs at 

different air temperatures. That is largely true, but Figure 4 shows us that as the 

temperature decreases, the DFR minimum decreases. The solutions produced by the data 

retrieval program are not affected significantly because for most values of D0 and DFR 

the relationship does not change with temperature.   

 

Figure 4 

 
 

 

 

5. Errors in the Data Retrieval Program 

 

 The only serious error we encountered in the data retrieval program occurred 

when NT was very large. Figure 5 shows us the results of such a situation. In the figure, 

the calculated D0, NT, and R values are not remotely similar to the true values. We 

believe that the error is a result of losing the Ka band in the simulated precipitation 

because a large NT usually means there is a large water-content. A large water-content 

could attenuate the signal on the Ka band enough to diminish it completely. Figures 6a 

through 6d shows us how the model degenerates as NT increases. Even though the errors 

associated with the data retrieval program are significant, the program can still be used to 

analyze real experimental data because the very large NT values used in the simulation 

are unlikely in actual rain.      



Figure 5 

 



Figure 6a 

 



Figure 6b 

 



Figure 6c 

 



Figure 6d 

 



6. Expanding the Data Retrieval Program 

 

a. The Snow DFRs 

 

 The DFR-D0 relationship for snow is different than the DFR-D0 relationship for 

rain, which is why separate look-up tables are needed for snow. One difference is that all 

the DFRs of snow can be approximated well by assuming μ is equal to zero. However, 

the DFR of snow does depend on the snow density  (g cm
-3

). Another difference is that 

when we calculate the DFR of snow, we determine the DFR as a function of D0 snow, 

instead of D0 liquid water. Figure 7 shows us the DFR of snow as a function of D0 liquid 

water, which is a convention used by the rain and melting layer look-up tables. 

 

Figure 7 

 
 

b. The Melting Layer 

 

 For the melting layer, which is also known as the bright band, the DFR changes 

from a snow DFR at the 0
o
 C isotherm to a rain DFR at some lower height. We created 

the bright band look-up tables by integrating the DSD multiplied by the backscattering 

cross sections from the smallest to the largest particle diameter. The integration was done 

at 60 different heights. Figure 9 is a visualization of the calculations. The bright band 

look-up table contains 700 D0 for each of the 60 range gates, which results in 42000 Ib 

and Ie values. Figure 8 shows us the DFRs at each range gate in the melting layer and 

illustrates how the DFRs transition from snow to rain.  



Figure 8 

 



Figure 9 

 

       
 

 A comparison between the look-up tables we created revealed that there are 

some discrepancies between the tables. At the lowest range gate in the bright band table, 

the DFR is supposed to match the DFR of the rain table exactly because at the lowest 

range gate the drops have all melted into water. As can be seen in Figure 10, there are 

discrepancies between the two tables. At the highest range gate in the bright band table, 

the DFR is supposed to match the DFR of the snow tables. As can be seen in Figure 11, 

there are also discrepancies between the snow table and the bright band table. The 

discrepancies in the snow table are particularly disturbing because it seems that they 

depend on the snow density, but the discrepancies do not do increase or decrease as the 

density increases or decreases.  



Figure 10 

 



Figure 11 

 



7. Conclusion 

 

 The main goal of the backward recursion algorithm and data retrieval program is 

to take two equations and calculate two unknowns, D0 and NT. The program calculates 

these two particular DSD parameters because they have physical meaning. My focus was 

to explore different aspects of the program. First, I looked at how the retrieved 

parameters (D0, NT, R) change as a function of variables such the shape factor, the 

dielectric constant, and the temperature. The changes in the DFR created by varying the 

dielectric constant and the temperature had almost no effect on the solutions produced by 

the retrieval program. The changes in the DFR created by varying μ had a significant 

effect on the solutions. The program overestimated or underestimated the D0 and NT 

values as μ varied. Second, I looked at areas where the model broke down. The one 

instance that I found where the model completely broke down is when NT becomes very 

large. However, the NT has to be unrealistically large for this to occur, and I could only 

produce the break down with simulated data. Lastly, I looked at expanding the retrieval 

program into other precipitation phases. I produced the look-up tables for the snow and 

the bright band at different density. Unfortunately, the look-up tables had some 

discrepancies between the rain, snow, and bright band; however, they did correspond 

well with each other for the most part. Overall, the backward recursion algorithm and 

data retrieval program look promising, but there are still some inaccuracies that need to 

be taken into account    

 

 

 In order to complete the data retrieval program, we need to accomplish several 

tasks. One task is that we need to determine which conventions are going to be used in 

the program. For example, should we use the variable or fixed dielectric constant? Should 

we define D0 in terms of liquid water or in terms of snow? Should we just use Dm instead 

of D0 because it is easier to calculate? Should we use a constant μ at every precipitation 

phase or should we vary the μ through the mixed phase? Another task is to determine 

where the mixed phase region begins and ends. Sometimes the bright band in the return 

power is clear and sometimes it can be very ambiguous. A third task is to establish how 

robust the data retrieval program will be. For example, should we include the rain look-

up tables for the different temperature when it has such little effect on the solution? 

Should we include fail-safes for unlikely meteorological conditions? These are some of 

the tasks that must be completed before we implement the program, but, again, the 

backward recursion algorithm and data retrieval program look promising.  
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