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ABSTRACT

Dust storms are subject to study since they are correlated to an increase in mortality rates due to respiratory
illness, especially in the southwestern U.S. With the aim of providing better tools in the understanding of dust
storms, we present models for detection of dust storms from MODIS Terra Level 1B radiances, which can be
applied in near real time, in contrat to those models that are based on MODIS Aerosol Optical Thickness
products that are produced two days after reception.

In this paper we present a collection of events used to construct a database that we used to model probabilistic
and soft computing classi�cation methods. Then we compare the probabilistic models: Maximum Likelihood,
MLE, and Maximum a posteriori, MAP, against the soft computing models: Feedforward Backpropagation
Neural Network, FFNN, and Probabilistic Neural Network, PNN. The results showed that the soft computing-
based models perform better in classifying dust, and discriminating from other signatures, such as clouds, smoke,
etc.

Keywords: Neural Networks, Probabilistic Modeling, Dust Storm, Image Processing, Pattern Recognition,
Remote Sensing

1. INTRODUCTION

Dust storms are a major cause of several physical, environmental and economical hazards. Air pollution from
dust storms is a signi�cant health hazard for people with respiratory diseases and can adversely impact urban
areas1 as shown in Figure 1 and Figure 2. There is a direct correlation between exposure to high-levels of air-
borne particle concentrations (aerosols) and the increase in mortality rate from cardiovascular, respiratory illness
and lung cancer. This situation is major concern for health and safety agencies as well as for the environmental2

and geological science agencies.3

Therefore, timely warnings of dust storms need to be fully functional in populated regions for health concerns
and tra¢c control.5 However, in spite of the fact that several methods for detecting dust storms exist, there are
still open questions in the detection process and in dust storm feature extraction.8 Furthermore, dust storm are
still considered as an open problem in analysis and modeling, since a single dust storm can travel large distances.
That is the case of many Saharan dust storms whose aerosols are spread along the globe.

In the literature we can �nd the dust storm problem addressed from di¤erent perspectives. The geophysical
perspective9 demonstrated that it is possible to detect dust aerosols using satellite infrared bands.4 There are
also studies that show the transport of the dust storms,5 which cover large parts of the earth,6 by observing the
origins and causes of dust storms.7 Recently, The University of Texas El Paso (UTEP) has made signi�cant
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contributions in the latter topic by Rivera et al.,10 Lee et al.,11 and Swapna.12 However, these �ndings need
to be improved in order to produce an adequate insight into the dust storm analysis problem. Moreover, dust
storm detection is still an open problem in rapid response systems, which require to minimize the processing
time, and be able to produce results within moderate and high resolution imagery.

In remote sensing exist di¤erent approaches that are specialized in detection14 and classi�cation13 tasks
of multispectral data,15 however, there are no specialized classi�cation systems that use machine learning
approaches to model dust storms. In literature exist detection methods based on principal components such as
the one presented by Hillger et al.16 and Agarwal et al.,17 improve the visualization of dust storms, however,
such methods show other objects besides the dust aerosols. Therefore, there is still a need to develop more
accurate detection methods.

In this paper we will present �ve novel models for dust storms that are able to perform to high level of accuracy,
and are suitable for real-time applications. This models are based on 8 di¤erent methods of feature extraction
on the Moderate Resolution Imaging Spectroradiometer (MODIS) data. Such models are: Probabilistic model,
Maximum Likelihood Estimation model, Maximum a posteriori model, Feedforward Neural Network model, and
�nally the Probabilistic Neural Network model. The di¤erent features extracted from multispectral MODIS
data vary between the selection of visual bands and near infrared re�ectances. When the models are compared,
the neural approach show the best numerical results compared to ground truths from examples found in the
literature. Furthermore, the probabilistic models show information not evident in the ground truth giving the
ability to �nd non-trivial dust information.

In Section 2, the formation of a database of events is described. The spectral analysis of dust storms is
introduced in Section 3, while in Section 4, the proposed models for dust storms are explained. In Section 5,
the design of experiments is presented followed by a discussion of the results and �ndings. Finally, conclusions
are drawn in Section 6.

2. EVENTS DATABASE: DATA COLLECTION

2.1. Dust Storms

We have collected a database of dust storm events using the alerts record from the National Weather Service in
Santa Teresa, New Mexico , as well as other events reported by Rivera,10 Swapna,12 Britt et al.,6 Lee et al.11,
and Hillger et al..16 In Table 1 is presented a list of di¤erent events which include Dust Storm (DS) events.
Table 1 show the date of the events, the classi�cation, the time of the observation (in MST), and the scan time
of MODIS Terra (in UCT). In Table 2 is presented the downloaded� granule information corresponding to Table
1. The classi�cation code of the events is a standard used in weather forecasts services, except by C0 which will
be used to denote the background (land, sea, etc.) in the samples.

2.2. Other Events

2.2.1. Wind Blowing with Dust (BLDU)

This kind of events are very similar to a dust storm, however they were not considered as large or strong as
a dust storm. This events are characterized by dust transported by the wind, with low concentration of dust
aerosols. These events are also shown in Table 1.

2.2.2. Smoke (SM)

Also in Table 1 appear a few events showing smoke. This events were included in the collection since their visual
and spatial properties are very similar to the dust, and we want our models to discriminate smoke signatures
from dust signatures. Essentially, the smoke is desired to be considered as background.

�The granules were downloaded using NASA�s Warehouse Inventory Search Tool, WIST, search tool and directly from
the FTP archives.
WIST: https://wist.echo.nasa.gov/~wist/api/imswelcome/
FTP: ftp://ladsftp.nascom.nasa.gov/allData/5/



2.2.3. Validation

The validation collection contain dust storm, blowing dust events, as well as regular days with no dust events.
This collection was created with the purpose of validate the results with samples not considered in the design of
the classi�cation method and either in the estimation of the probability density functions.

3. DUST STORM SPECTRAL ANALYSIS

It is important to address the selection of the spectral bands that may be relevant to the study of dust storms.
Mainly because some of the spectral bands can introduce noise to the model and cause a dramatic drop in the
performance of the model. In this section we justify the usage of solar re�ective bands 1, 3, and 4, as well as
the thermal radiance emissive bands 20, 29, 31, and 32.

3.1. Selection of Spectral Bands for Analysis and Modeling

The basis of MODIS products are MODIS level 1B data. From level 1B bands we can extract all the bands needed
for analysis and modeling. It is intuitive that bands B1; 3; and 4 can be utilized e¤ectively for visual assessment
of the dust storms since we can map such bands to an image of RGB composite (R = B1; G = B4; B = B3) and
obtain a true color image of MODIS data. This leads to an appropriate visual inspection of the data. However,
Hao et al.19 have demonstrated that bands B20; 29; 31; and 32 can be utilized e¤ectively for visual enhancement
of dust storms. Furthermore, Miller et al.20 and Liu et al.,21 proposed an algorithm for dust storms visual
representation where the dust storms appear in a di¤erent color than the background.

In previous work from Ackerman et al.22 it is shown that the band math approach provide with a visual
enhancement of the dust storms. This approach proposes that bands B32 and B31 should be subtracted to
provide a good contrast of the image containing dust storms.

Based on the previously cited research work we have selected seven bands for our analysis and modeling:
B1; 3; 4; 20; 29; 31; and 32. It is also considered the band math approach subtracting bands B32! 31 providing
with an additional "derived" band for a total of eight bands for our study. As an example, we selected a random
dust storm event from the collection and generated images from the bands we selected for study. In Figure 3 is
shown a true color image in an RGB composite from bands B1; 3; 4, intuitively we can see the dust storm with
the color corresponding to the human eye visual spectrum; while in Figure 4 is shown a false color image from
B20; 31; 32, into an RGB composite, displaying the dust regions with a near pink color. The band subtraction
approach is exempli�ed in Figure 5 subtracting bands B32 ! 31 and displayed in grayscale to emphasize how
lighter colors (near white) are associated with dust information. Note that the displayed images have a correction
based on unusable pixel data and the uncertainty index which is explained in the following section.

3.1.1. Considering Uncertainty in Data

Unusable Data MODIS level 1B raw data is stored in 16 bit range. Typically all the data is stored in the
�rst 15 most signi�cant bits (on the range [0; 32767]). However, if for any reason the detector is unable to
read data, the pixel will contain a value over this range, and will be typically 65535. Such data must not be
used in the design of our models since it will bring uncertainty and bias to the �nal model. Therefore, instead
of ignoring those regions in the modeling, we propose to use a series of median and mean �ltering preceded of
decimation �lters in order to estimate the information that is lost. Then we utilize this approximation to also
recover data using the uncertainty index.

Uncertainty Index The Uncertainty Index (UI) is an 8-bit matrix structure (of unsigned integers) associated
to the bands being considered. The four least signi�cant bits represent MODIS Characterization and Support
Team (MCST)�s best estimate of the uncertainty in each measurement of re�ectance for the re�ective Solar
bands, and radiance for the thermal emissive bands. The indices take on values of 0 through 15. The value
of 15 is reserved for representing uncertainties of those data that cannot be calibrated, or when the calculated
index is higher than 15. The UI is computed in accordance to the measured percent uncertainty as follows

UI(Bm) = `(Bm) ln

 
ui
(Bm)
n

sui(Bm)

!
; (1)



where Bm is the m!band and is the least rapidly varying index, n = [n1; n2] for n1 denoting the number of the
row in the captured image, and n2 is the number of the column and the most rapidly varying index; ui is the
uncertainty index in percent, and sui is the speci�ed uncertainty; ln denotes the natural logarithm, and ` is a
scaling factor.

The percent uncertainty ui can be recovered from the uncertainty index UI as follows

ui(Bm)
n

= sui(Bm)e
UI

(Bm)
n

`(Bm) ; (2)

ci(Bm)
n

= 1! ui
(Bm)
n

100
; (3)

where e denotes the exponential (also denoted as "exp"), and ci
(Bm)
n is simply the rational expression of the

ui
(Bm)
n but in the range [0; 1] with the opposite meaning as a certainty index.

The scaling factor ` and speci�ed uncertainty sui values come from band-dependent look up tables and are
attached as attributes to each uncertainty index within the associated MODIS Level 1B �le. The attributes are
provided for convenience to those downstream users who convert the uncertainty index to percent uncertainty,
given that the values of ` and sui are subject to change.

In our models we choose to diminish the e¤ect of the uncertainty by performing a weighted average between
the actual sensed data, and an approximation to the unknown true value. The weighting is based in the rational

certainty index ci
(Bm)
n de�ned in (3).

This process has a two folded purpose: �rst, to produce accurate models from as close to true data as possible,
as well as to test the robustness of such models to operate under uncertainty. The named process of estimation
of true data based on uncertainty and unusable data is presented in Figure 6. An example of an input and
output random event band is shown in Figure 7 which contain unusable pixels and uncertainty.

Quantitative Analysis of the Proposed Method The performance of the proposed method for estimation
of true spectral data is evaluated with di¤erent metrics by �rst using two synthetic bands, and second, using
real life spectral bands. In the �rst test, the synthetic bands were degraded by setting an arbitrary matrix as
multiplicative noise associated to the uncertainty index of a real life spectral band; in other words, we take the

ci
(Bm)
n of a random spectral band, and use it as a multiplicative noise. Then, the images were contaminated

with non usable pixels. The performance metrics follow with a brief description.

Normalized Mean Squared Error (NMSE). The NMSE is given in percentage, and is described as23

NMSE = 100

0
@
var
�
bBm!Bm

�

var (Bm)

1
A %; (4)

where var(�) is the variance, Bm is the original spectral band, and bBm is either a degradation or an approximation
to Bm.

Signal to Noise Ratio (SNR). The SNR of an image can be interpreted as how much of the original
spectral band we have. The higher the number, the better. The SNR is given in dB, and is de�ned as23

SNR = 10 log

�
NMSE in %

100

�!1
dB, (5)



Peak Signal-to-Noise Ratio (PSNR) The PSNR is also used to measure the di¤erence between two
spectral bands, and it is very common because in many applications it provides with a quantitative measure that
represent better the amount of likelihood between signals when compared with other measures. The PSNR is
also given in dB and it is de�ned as

PSNR = 20 log10

�
b

2
p
�2

�!1
dB, (6)

where b is the largest possible value of the signals (typically 255 or 65535 for 8 and 16 bit images respectively),
and � is the mean of the di¤erence between the original image and an approximation or degradation: � =
1
n

P
n
Bmn ! bBmn, where n = [n1; n2] are the spatial coordinates of the spectral band.

Weighted Signal-to-Noise Ratio (WPSNR). The WPSNR is other useful variant of the SNR. It
uses a contrast sensitivity function (CSF)25 to weight the spatial frequency of a spectral band error. It is given
in dB as

WPSNR = 20 log10

�
1

2
p
"2

�
dB, (7)

where " is the mean given by " = 1
n

P
n
�n, �n = CSF

n
Bmn ! bBmn

o
, and CSF f�g denotes the transformation

(�ltering) given by the sensitivity function CSF.24

Using all he criteria speci�ed previously, we present the results over synthetic and real spectral data. In
Table 3 we observe the performance metrics compared against non restored data; clearly the proposed estimation
of true data, performs a very good restoration. The comparison against di¤erent methodologies remain pending.

4. DUST STORM MODELING FOR CLASSIFICATION

The classi�cation methodologies and pattern recognition techniques for remotely sensed data, involve the usage
of probabilistic methods. The reason for this is they reliability, and also the fact that the expected output result
can be determined intuitively. In the other hand, soft computing methods such as the neural networks, are used
as a black boxes with no direct control of the model, unless supervised learning techniques are carefully chosen.
However, soft computing techniques have been evolving and particularly the fuzzy logic and neural networks
�eld. In many applications, neural networks can even perform better in comparison with the probabilistic
methodologies for classi�cation of remotely sensed data.26

In this section we describe �ve models for classi�cation. First, we consider a simple probabilistic method
based on the individual probabilities as a function of two random variables. Second, a probabilistic method
based on the Maximum Likelihood assuming no independence of random variables. Third, a probabilistic
method based on the Maximum a Posteriori classi�cation (MAP). Fourth, a soft computing method based on a
four-layered feed forward backpropagation neural network with feature dependent architecture. And �nally the
�fth model is a soft computing method based on a neuro-fuzzy classi�er, which based on a possibilistic neural
network.

4.1. Probabilistic Modeling as a Function of Two Random Variables

In this section we describe a simple probabilistic formulation and parameter estimation for a model of dust
storms provided MODIS data. We start with the following de�nitions.

Definition 4.1. Let X be a discrete random variable associated to the universe ! of values for hyperspectral
remote sensing data. ! 2 <.
Definition 4.2. Let X(Bm) be the a random variable associated with the values of the m-th spectral band of
MODIS.

Definition 4.3. Let X
(Bm)
n be the random variable associated with the n-th pixel of the m-th spectral band of

MODIS.



Definition 4.4. Let f
X
(Bm)
n

(X
(Bm)
n = x) denote the probability density function of the n-th pixel of the m-th

spectral band of MODIS to have a value equal to x.

In this probabilistic classi�cation method we are interested on displaying the probability of the presence of a
Dust Storm given MODIS data, based in the spectral band subtraction B32! 31. Thus we are interested in the
modeling of f

X
(B32!31)
n

(X
(B32!31)
n = x), which could be modeled assuming a Gaussian distribution as follows

f
X
(B32!31)
n

(X(B32!31)
n

= x) =
1q

2��2
X(B32!31)

e
! 1
2

 

x!�
X(B32!31)

�2

X(B32!31)

!

(8)

where �X(B32!31) is the expected value of the random variable X(B32!31) and �2
X(B32!31) is the variance associated

with the random variable. MODIS band subtraction B32 ! 31 is assumed to produce a random variable
X(B32!31).

The PDF f
X
(B32!31)
n

(X
(B32!31)
n = x), indeed, is theoretically de�ned as a function of two random variables

g
�
X
(Bm)
n

�
, more speci�cally, a di¤erence of two random variables, as follows
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where E [�] denotes the expected value, var[�] is used to denote the variance, and f
X
(B32)
n

;X
(B31)
n

(X
(B32)
n =

x;X
(B31)
n = x) is the joint probability density function. This three parameters are unknown, moreover, we

cannot assume independence in the bands since they are highly correlated as in most remote sensing applica-
tions.27 Therefore, the attempt of showing proof of independence will not be addressed in this paper.

In spite of the fact that the latter parameters are unknown, they can be estimated by observation of the data.

The only important variable to observe at this point is the function g
�
X
(Bm)
n

�
from (10) used in (8), and the

estimation based on such observations is introduced in the following sub-section.

4.1.1. Estimation of �
g
�

X
(Bm)
n

� and �2
g
�

X
(Bm)
n

�.

In our experiments we to obtain approximations to the true �
g
�

X
(Bm)
n

� and �2
g
�

X
(Bm)
n

�, which from here will

be referred to as b�
g
�

X
(Bm)
n

� and b�2
g
�

X
(Bm)
n

� respectively. Such approximations are estimated over the number

of events selected for modeling and design (see Section 2). In the approximation process we observe several
samples (pixels), in the order of millions since 23 out of 31 events were selected for modeling, which lead to a
more accurate estimation of the required parameters. The dust regions were extracted manually and frequency
histograms were computed in each one. The manual segmentation process was entirely based on the reported
events referenced in Table 1. We have approximated the parameters in three di¤erent ways: Global, Eventual,
and Averaged.



Estimation Based on Global Histogram This methodology consists on computing the histogram for all the

events and from the total frequency observed we have estimated the sample mean b�(global)
g
�

X
(Bm)
n

�, and the standard

deviation b�(global)
g
�

X
(Bm)
n

�.

Estimation Based on Eventual Histogram The histogram was computed individually for all the events,

and the sample mean b�(event #)
g
�

X
(Bm)
n

�, and the standard deviation b�(event #)
g
�

X
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n

� was estimated for each one. Having a
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as well as a vector of standard deviations

b!(events)
g
�

X
(Bm)
n

� =

�
b�(event 1)
g
�

X
(Bm)
n

�; !!!; b�(event !)
g
�

X
(Bm)
n

�

�
; (14)

and the �nal estimation of b�(eventual)
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and the �nal estimation of b�(eventual)
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Estimation Based on Average of Estimations This is a combination of the previous estimation de�ned
as the non-biased average between the two previous estimations, which formally is:

b�(average)
g
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(Bm)
n

� =

b�(global)
g
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� " b�(eventual)
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After the completion of the process we obtain the total histograms an �nal estimations. In Figure 8, we
observe the estimation over 16-bit data, while the estimation for 8-bit data is shown in Figure 9. The estimation
based on the recovered radiances is shown in Figure 10. In these �gures, the total histogram (in blue) is shown
in percent, while the di¤erent methods of estimation are shown in the following colors: Global in red, Local in
green, and Averaged in Pink.

This classi�cation method was designed such that the output f
X
(B32!31)
n

(X
(B32!31)
n = x) can be mapped to a

visual representation of the probability of a dust event, and not for segmentation. However, the segmentation
or classi�cation between background and Dust Storm can be achieved by thresholding the output as desired,
using the following decision rule

x 2 $S if f
X
(B32!31)
n

(X
(B32!31)
n = x) % � ; 0 " � " 1

x 2 C0 otherwise
(19)

where � is the threshold, $S denotes the dust storm class, and C0 is the background class. This threshold
can be estimated according to the con�dence interval required by the �nal application, or also, can be tuned
experimentally by the end user.



4.2. Probabilistic Modeling Based on the Multivariate Maximum Likelihood Classi!er

Definition 4.!. Let f#! (C$ = c) be the probability mass function of the &-th class C to occur with a value of

c.

Definition 4.". Let f
X
(Bm)
n

"#!

�
X
(Bm)
n = x#C$ = c

�
be the conditional probability density function of the n!th

pixel of the m-th spectral band to have a value of x given the probability that the &-th class occur with a value of
c. !his might be referred to as the "a priori" probability.

The Maximum Likelihood Classi�er28 (Maximum Likelihood Estimator, MLE), is based on the prior probabil-
ities assuming that the posterior probabilities are unknown. The MLE is an accepted measure for classi�cation
and analysis of remotely sensed data.29 Therefore we will model an MLE classi�er specialized on classi�cation
of dust and background. In our model will use four classes, where C$ = c should take the following values

c =

$
%%&
%%'

1 = C0 ; for land/sea background
2 = SM ; for smoke
3 = B'$U ; for blowing dust
4 = $S ; for dust storm

; (20)

therefore C$ = c is de�ned over & = 1; 2; 3; 4 as described above (C1 = c = C0, C2 = c = SM , etc.), and the
probability density functions de�ned above will be estimated from the collected samples.

The MLE can be derived from Bayes theorem which states that
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where f
#! "X(Bm)

n

�
C$ = c#X(Bm)

n = x
�
is called the posterior probability. Since we are interested on �nding the

maximum likelihood between the observed data and the prior probability for all classes, we can state a decision
rule as follows
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which can be simpli�ed by removing the common factor f
X
(Bm)
n

�
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(Bm)
n = x

�
, to the following
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n
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which will be modeled under the assumption that the prior probability is normally distributed. For convenience
we can rewrite the above terms by de�ning

(
(Bm)
!;n (x) = f

X
(Bm)
n

"##

�
X(Bm)
n

= x#C! = c
�
f## (C! = c) (24)

that allows restating the decision rule as follows

x 2 C$ if (
(Bm)
$;n (x) % (

(Bm)
%;n (x) $& %= i (25)

which is more convenient to handle. In MLE, the functions (
(Bm)
!;n (x) are commonly referred to as discriminant

functions.



The discriminant functions (
(Bm)
!;n (x) can be reduced because of the gaussianity assumption of the prior PDF

as follows
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" ln (f## (C! = c))

where ) is the dimension size of x which is related to the dimension of the features, #$& (�) is the determinant
function, !

X
(Bm)
n

"## is the covariance matrix of the prior PDF, �X(Bm)
n

"## denotes the mean vector, (�)
'
denotes

the transpose operation, !!1
X
(Bm)
n

"##
is the inverse of the covariance matrix !

X
(Bm)
n

"## , and ln (�) is the natural
logarithm.

It is said30 that the factor !(
2 ln (2�) adds no discriminant information to the classi�cation, and often its

removed. Also when the uncertainty is high for the PMF f## (C! = c) it is recommended to be removed from
(28), leading to a commonly used simpler discriminant function
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where the common factor was 1
2 was eliminated as well. However in this model we preserved all the factors

since there is a high amount of sample data to perform an adequate estimation of the PMF f## (C! = c). So
the �nal discriminant function utilized in our MLE model (25) is

(
(Bm)
!;n (x) = ln (f## (C! = c))!

)

2
ln (2�)! 1

2
#$&
�
!
X
(Bm)
n

"##

�
(30)

!1
2

�
x! �

X
(Bm)
n

"##

�'
!
!1
X
(Bm)
n

"##

�
x! �

X
(Bm)
n

"##

�
!

In the following sections we explain the features selected for modeling dust storms using MLE, and the

we explain the estimation of the prior PDF�s f
X
(Bm)
n

"#!

�
X
(Bm)
n = x#C$ = c

�
and f#! (C$ = c) ; as well as the

parameters that de�ne them in order to be used in the discriminant function (
(Bm)
!;n (x).

4.2.1. Features and Events Selection

The selection of features is a very important step in classi�cation since the performance is proportional to the
relevancy of the data.26 As explained before (see Section 3.1) in our study we will model dust storms based
on certain bands only: B1; 3; 4; 20; 29; 31; 32. We have de�ned di¤erent feature vectors depending on the �nal
application. In the following paragraphs we explain these features and their intended target application.

Features for O"ine Radiance Intensity Analysis. We use the term "O!ine" to refer to applications
that do not require simpler nor faster processing algorithms, such as real time applications, rapid response
applications, etc. In this category we work directly with the 16 bit MODIS data with no radiance recovering.
This means that instead of having the original scale (W*m2*�m*sr), we will work directly with the raw intensity



values. For modeling and design of the classi�cation methods, all the intensities were processed to decrease
uncertainty by using the method proposed in Section 3.1. The feature vector F (1) is constructed as follows

F (1) = [B20; B29; B31; B32; (B32! 31)] ; (31)

where F (m) will denote just a label to distinguish between feature vectors, and does not represent any mathe-
matical operation (i.e. F (2) denotes the feature vector #2, not the square of F ). The feature B32! 31 denotes
the subtraction of band B31 from band B32. In Figure 11 is shown a scatter plot from two elements of F (1).
This plot demonstrate the non-triviality of the dust storm problem.

Features for O"ine Recovered Radiance Analysis. We use the term "Recovered" to refer 16 bit MODIS
data that is recovered to its original scale (W*m2*�m*sr). The recovery process is given by the following
equation

'(Bm)
n

= +s(Bm)(si(Bm)
n

! +,(Bm)) (32)

where '
(Bm)
n denotes the recovered radiances, +s(Bm) are the radiance scales, +,(Bm) are the radiance o¤sets,

and si
(Bm)
n are the scaled intensities, or raw data (used in F (1)). After recovering process, the radiances were

processed to decrease uncertainty. The feature vector F (2) is constructed as follows

F (2) =
)
'B20; 'B29; 'B31; 'B32;

*
'B32 ! 'B31

+,
! (33)

The feature 'B32!'B31 de�nes that the subtraction of band B31 from band B32 is performed after the recovery
process. In Figure 12 is shown a scatter plot of two elements of F (2)!

Features for Online Visual Band Applications. We use the term "Online $isual Assessment" to refer to
applications that will work only on the visual spectral bands, that is B1; 3; 4; and are required to produce a rapid
result. In this category we work with scaled to 8 bit MODIS data with no radiance recovering. For modeling,
all the intensities were processed to decrease uncertainty. The feature vector F (3) is constructed as follows

F (3) =
h
bB1; bB3; bB4

i
; (34)

where bB points out that the original 16-bit data has been downscaled to 8-bit data. The scatter plot of Figure
13 includes two columns of F (3).

Features for Online Assessment Applications. This features are modeled in the same way as the previous
with the di¤erence that we don�t work with the visual spectral band, instead we work with downscaled non-
recovered raw radiances, de�ning the feature vector as

F (4)!
h
bB31; bB32;

�
bB32! bB31

�i
; (35)

which is plotted in Figure 14 to observe the sparsity of the data.

Selection of Events for Modeling. The events referenced in Section 2.1 show an indication of which events
are utilized for modeling and which are utilized for validation. The information is shown in Table 1 and in Table
2, having that the events noted with (�) are left out for validation. Note that in spite of the fact that many
of the events are selected for modeling, not all the pixels are actually used to construct the �nal model. The
pixel-based selection will be explained in detail later at Section 5.1.



4.2.2. Estimation of Probability Density Functions

Typically in remote sensing image processing and classi�cation, the problem of small sample size does not
exist, instead, the problem of large sample size, excessive dimensions and relevant samples selection are the
most common issues. In our models we face the problem of excessive sample size, which could be translated
in large amounts of time for the estimation of parameters. This problem is also experienced when neural
networks and other sophisticated learning-based methodologies are used. However, it is relatively easy and less
time-consuming if we estimate the densities under Gaussian assumptions since the estimation of sample means,
variances, and covariances require less processing time if compared to the training phase of a neural network
based on backpropagation.

In MLE, the estimation of the densities is performed by histogram observation on the feature vectors described
in Section 4.2.1 and for each one of the events selected for modeling, as described in Section 2.1. The histograms
for all samples were added to get one �nal histogram for each band and perform estimation over such histograms
by observing the distribution. In this section we explain the estimation process for the a priori probabilities

f
X
(Bm)
n

"#!

�
X
(Bm)
n = x#C$ = c

�
and f#! (C$ = c) required for the MLE method.

Estimation of the a priori Conditional Probability Density Function f
X
(Bm)
n

"#!

�
X
(Bm)
n = x#C$ = c

�
!

It is useful to know, in a general sense, the uni-variate PDF of f
X
(Bm)
'

(X
(Bm)
) = x), aiming to understand if

Gaussian assumptions are appropriate to model the spectral bands we are studying. With this purpose we
estimate simple uni-variate PDF�s and present them in Figures 15-30. In these �gures are shown all the PDF�s,
as well as the estimation of parameters under the assumption of gaussianity. Such parameters are the sample
mean � and standard deviation �, (variance �2) for the uni-variate normal (or unidimensional Gaussian). The
unidimensional Gaussian probability density function is given by

f
X
(Bm)
'

(X(Bm)
) = x) =

1q
2��2

X(Bm)

e
!
#

x!�
X(Bm)

�2

$

= N(�X(Bm) ; �X(Bm)); (36)

where N(�X(Bm) ; �X(Bm)) is a short form to denote a Gaussian distribution. Since we are approximating the
true values, we will use b�X(Bm) ; and b�X(Bm) ; in the following models. The approximation of parameters will
be more accurate as we have as many samples as possible, in other words, the approximation converges to the

true parameters when we have an in�nite number of samples. In the estimation of f
X
(Bm)
'

(X
(Bm)
) = x) we have

utilized &75 millions of sample pixels. From the �gures mentioned above, it is clear that Gaussian assumptions
are appropriate for our models. In Figure 32, we show the histogram of B20 raw intensities, as well as di¤erent
probability density functions and how they �t the band; once again, it is clear that a Gaussian can be acceptable.

After justifying the Gaussian assumption, we can proceed to the estimation of the conditional prior probability

density function f
X
(Bm)
n

"#!

�
X
(Bm)
n = x#C$ = c

�
. Here, we follow a di¤erent process since the goal is to estimate a

set of parameters for each class. This parameters are: the vector of expected values �
X
(Bm)
n

"#! and the covariance

matrix !
X
(Bm)
n

"#! . Since we are dealing with estimations we use the notation b�X(Bm)
n

"#! and
b!
X
(Bm)
n

"#! to refer

to the estimated parameters.

Then we can de�ne the set of parameters to estimate as

"! =
n
b�'* (1)"#1 ; ... ; b�'* (1)"#! ; b�'* (2)"#1 ; ... ; b�'* (!)"#!

o
(37)

and
#! =

n
b!* (1)"#1 ; ... ; b!* (1)"#! ; b!* (2)"#1 ; ... ; b!* (!)"#!

o
(38)

where "! can be de�ned as either a matrix of expected values of size [# ' 4], or as a set of expected values
containing 4 vectors associated with the estimated expected values; in the other hand #! is a multidimensional
set of covariance matrices of di¤erent sizes depending on the size of the feature vector. For instance, the �rst



element of the set is the covariance matrix b!* (1)"#1 of size [5 ' 5], while the last element of the set #! is the
covariance matrix b!* (!)"## of size [4' 4].
For the estimation, we have manually segmented the sample images containing dust storms, blowing dust,

and smoke, such that we can utilize the region of the segmented image as a mask. This mask is associated with
a particular class C$ . Then having all the masks and the associated classes, we extract and store the subset of
pixels associated to the &!th class. Then, we compute the sample means of the -!th feature vector for the &!th
class as follows

b�* (()"#! =
)
b�* (()1)"#! � � � b�* (()m)"#!

,
(39)

where b�* (()m)"#! is the sample mean of m!th element for the -!th feature vector of the &!th class and is
formulated as follows

b�* (()m)"#! =
1

n* (()"#!

)
* (()"%!#

+!1

F (";m)+ #C$ (40)

where n* (()"#! is the number of samples. Then we compute the covariance matrices over all the subset of pixels
of the -!th feature vector associated to the &!th class, as follows

b!* (()"#! =
1

n* (()"#!

)
* (()"%!#

+!1

�
F (")#C$ ! b�* (()"#!

��
F (")#C$ ! b�* (()"#!

�'
(41)

where the covariance estimation problem is clearly not ill-posed since we have a large number of data samples
available for modeling as in most remote sensing applications. Figure 31 present a graphical explanation of the

process of parameter estimation for the multivariate Gaussian f
X
(Bm)
n

"#!

�
X
(Bm)
n = x#C$ = c

�
.

A Note on the Masks. The masks were created by the author (P.R.P) manually by visual inspection of
the spectral bands B1; B3; B4; and B32 ! B32! In all the cases the information was con�rmed against papers
published and other research publications as detailed in Section 2. The main objective of the masks is to contain
the pixels that best represent information of &!th class (i.e. the dust storm), and as less as possible of everything
else (i.e. background, clouds, smoke), such that the algorithms can generalize and detect other regions of the
&!th class but with less probability, for instance: if the main class is & = $S, then the algorithm is desired to
be able to detect both the dust storm with high probability, and the dust storm transport with less probability.

Estimation of the a priori Probability Mass Function f#! (C$ = c)! With the purpose of estimation of
the PMF f#! (C$ = c), we have utilized the masks described above, and counted the frequency of pixels associated
with each class. Thus, the PMF can be denoted as follows

f#! (C$ = c) =

-
"samples##$!,
"samples$#! ; for f#! (C$ = c)

0 ; otherwise
(42)

where intuitively, being a class speci�c remote sensing application, the PMF is far from being uniform. The
estimated PMF is shown in Figure 33, and we also provide a logarithmic plot in Figure 34 in order to have a
better appreciation of the PMF estimation.

4.3. Probabilistic Modeling Based on the Maximum a !o"#$riori Classi!er

Definition 4.#. Let f
#! "X(Bm)

n

�
C$ = c#X(Bm)

n = x
�
be the conditional probability density function of the &-th

class to occur with a value of c# given the probability that the n!th pixel of the m-th spectral band has a value of
x. $lso this is commonly referred to as the posterior or "a posteriori" probability.



The Maximum a posteriori (MAP) approach is di¤erent from the MLE approach in that MAP estimates the
posterior probability while MLE deals with the prior probability. This can be explained by reformulating the
decision rule of MLE
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(43)

which can be restated provided that
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as follows
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or equivalently
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Then from Bayes theorem we can obtain the posterior probability based on the priors as
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which can be used to reformulate the decision rule by recalling the usage of the discriminant functions
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leading to the decision rule

x 2 C$ if, (
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%;n (x)! (50)

4.3.1. Features and Parameter Estimation

We constructed four di¤erent models based on the four feature vectors described in the MLE classi�cation
method: F (1); !!!; F (4). Therefore the estimation of the parameters is the same. For details see Section 4.2.



4.4. Soft Computing Modeling Based on Multilayered Feedforward Backpropagation
Neural Networks

In the pattern recognition �eld, the term Soft Computing is a new term involving a broad of areas such as
neural networks, fuzzy systems, support vector machines, etc., as well as most computational intelligence tech-
niques.31 Multilayered Feedforward Neural Network (FFNN) are of particular interest in pattern recognition
and classi�cation applications because they can approximate any square-integrable function to any desired degree
of accuracy, and can exactly implement any arbitrary �nite training set.32 There exist many remote sensing
data classi�cation problems that have been successfully solved using neural networks,14 besides dust storms.
Therefore we have designed a FFNN to model a dust storm by approximating the probability density function

f
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n
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C$ = c#X(Bm)

n = x
�
. One of the major advantages of FFNN is that it can overcome the estimated

f
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when it is poorly posed. This ability is well known as "generalization". And it is

due mainly because in the approximation of the true f
#! "X(Bm)

n

�
C$ = c#X(Bm)

n = x
�
, we often assume Gaussian

distributions, while a FFNN aims to �t the true density f
#! "X(Bm)

n

�
C$ = c#X(Bm)

n = x
�
, however if the PDF

is actually Gaussian, the FFNN can be compared with those models under such assumption. If the density
represents non-linearly separable classes, the FFNN will try to minimize the error of the separation hyperplane.

A simple FFNN contains an input layer and an output layer, separated by - layers (know as the hidden layer)
of neuron units. Given an input sample clamped to the input layer, the other units of the network compute their
values according to the activity of the units that they are connected to in the previous layers. In this model we
consider the particular topology where the input layer is fully connected to the �rst hidden layer, which is fully
connected to the second layer and so on up to the output layer.

Given an input x2X(Bm)
n , the value of the &!th unit in the i!th layer is denoted .%$(x), with i = 0 referring

to the input layer, i = -"1 referring to the output layer. We refer to the size of a layer as
..$%(x)

... The default
activation level is determined by the internal bias b%$ of that unit. The set of weights W

%
$! between .

%!1
! (x) to in

layer i! 1 and unit .%!1$ (x) in layer i determines the activation of unit .%$(x) as follows:

.%$(x) = ,
*
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+
; (51)

where
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$i 2 f1; !!!; -g ;

with
.0(x) = x;

where , =sigm(�) is the sigmoid activation function given by

sigm (/) =
1

1 " e!-
;

which could be replaced by any desired activation function. Given the last hidden layer, the output layer is
computed similarly by

%(x) = $
"#1(x); (52)
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;
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'
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$
"(x) " )"#1;



where the activation function & depends on the (supervised) task the network must achieve. Typically, it will
be the signum function de�ned as

& = sgn (') =

/
"1 if ' % *
!1 if ' " *

for a simple classi�cation problem.33

When an input sample x is presented to the network, the application of (51) at each layer will generate a
pattern of activity in the di¤erent layers of the neural network.

In Figure 35 is illustrated a basic multilayered FFNN network and its parameters. Intuitively, we would like
the activity of the �rst layer neurons to correspond to low-level features of the input (e.g., edges, orientations,
intensity di¤erences, etc.) and to higher level abstractions (e.g., detection of multispectral shapes, correlation,
PDF approximation, etc.) in the last hidden layers.34

4.4.1. Features and Events Selection

To model the Dust Storms with FFNN we will use the same events utilized in previous classi�cation methods. We
will also use the same feature vectors F (1); !!!; F (4), to design four FFNN models. Additionally, we introduce four
more feature vectors with a two folded motivation: �rst, de-correlate the training data; and second, reduce the
dimensionality preserving as most discriminant information as possible. For this purpose we use the %arhunen-
Loeve Transformation (%LT) (which is analogous to the Principal Component Analysis, PCA). In our previous
work,35 we have reported that the combination of %LT features in classi�cation, add discriminant capabilities
to the neural-based classi�ers.

Karhunen-Loeve Transformation of F (1); !!!; F (4)! The %LT is computed on the already de�ned feature
vectors F (1); !!!; F (4) to obtain a new set of feature vectors. This relationship is described as a function of the
original feature vectors as follows

F (5) = -
�
F (1)

�
;

...

F (8) = -
�
F (4)

�
;

where -(�) is a transformation function

-
�
F (")

�
= F (") b+!!./' ; (53)

having that b+!!./' is a projection matrix based on the #!th columns of the orthogonal matrix +./' , obtained
trough the %LT. The process of obtaining +./' is dependent of the set of input vectors F

(").

First, we estimate the sample mean of the m!th column of the -!th feature vector

�* (()m) =
1

n* (()

)
* (()#

+!1

F (";m)+ ; (54)

where n* (() is the number of samples available for modeling within F ("), and we perform this for all the columns
of the feature vector to construct a vector of sample means

�* (() = [�* (()1) ; !!!; �* (()m) ] ! (55)

Then we compute the covariance matrix .* (() of F (") as follows
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Then the eigenvalues of !* (() are extracted and de�ned as 01; 02; !!!; 0)
* (()
, where 01 ( 02 ( !!! ( 0)

* (()
. As

well as the eigenvectors "1;"2; !!!;")
* (()

associated to 01; 02; !!!; 0)
* (()
. Then, the projection matrix +./' , is

de�ned as
+./' =

h
"1;"2; !!!;")

* (()

i
(57)

where the eigenvectors ")
* (()

are column vectors, and +./' is orthogonal such that , = +./'+
'
./' , where ,

is the identity matrix. The relevance of %LT lies on the fact that if we perform the projection

bF (") = F (")+./' ; (58)

it will produce a feature vector bF (") projected in a new eigen-space where the data is not correlated leading
to more discriminant features. Furthermore, if we select only the #!th eigenvectors associated with the #!th
largest eigenvalues, we can reduce the dimensionality of the feature space by projecting the data into a new
sub-space. There are several methods that deal with the appropriate selection of the number of eigenvectors to
keep, and in our models our goal is to keep those eigenvectors whose associated eigenvalues magnitude (energy)
adds up to 99.99& of the total energy.

Our experiments in projecting all the features, showed that in average, 99.99& of the energy is concentrated
in the �rst 2 eigenvalues, therefore, we decided to preserve only the 2 eigenvectors associated with the 2 largest
eigenvalues, that is

b+!!./' =
h
")

* (()
!1;")

* (()

i
, (59)

for # = 2, and 1 " # " n* (()

leading to the �nal de�nition of the transformation function
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= F (")
h
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* (()

i
; (61)

where the new bF (") will be of size [n* (() ' 2].
The �nal set of vectors to use is F (1); F (2); F (3); F (4); -

*
F (1)

+
; -
*
F (2)

+
; -
*
F (3)

+
; -
*
F (4)

+
, but from now

will be addressed as F (1); F (2); F (3); F (4); F (5); F (6); F (7); F (8). In Figures 36-39 are shown scatter plots of
some elements of the feature vectors aimed to emphasize the complex distribution and overlapping of the data.

4.#. Soft Computing Modeling Based on Neurofuzzy Classi!cation

The term "neurofuzzy" refers to those systems that involve a combination (hybrid systems) of fuzzy logic theory
(fuzzy sets, fuzzy probabilities, etc.) and neural networks (supervised/non'supervised neural networks, feedfor-
ward, recurrent, etc.). It has been demonstrated that a random variable with a Gaussian distribution is analog
and equivalent to linguistic variable with a radial basis (RBF) membership functions. Therefore we will utilize
the properties of a probabilistic neural network to show the combination of both a fuzzy system combined in an
architecture of a feedforward neural network with a �xed number of layers.

4.#.1. Probabilistic Neural Network

The Probabilistic Neural Network (PNN) is a supervised neural network widely used in pattern recognition
applications.36 One of the main advantages is that it does not require training. The original PNN was
proposed by Specht and its results are often compared with common backpropagation networks. Its results are
shown to always converge to the Bayesian optimal solution.37 Indeed, the PNN is inspired in the Bayesian
classi�cation an classical estimation for probability density functions. The basic operation of the PNN is to
estimate the PDF�s of the features assuming Gaussian distributions. Then a Bayesian-based decision rule is
performed.



The general architecture of the PNN is composed of four layers, see Figure 40. The �rst layer is an input
layer receiving the features F ("). The second layer contains exponential functions 1 (�) in each nodes, and the
number of nodes correspond to the # number of samples available for training for the &!th class. This nodes

are called pattern units and are fully connected to the input nodes, and we refer to them as 2*
(()

$! . The output
of the pattern layer is denoted by
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The third layer contains summation units needed to complete the probability estimation. There are as many
summation units as classes (size of &). The &!th summation unit denoted as 3$ , receives input only from those
pattern units belonging to the &!th class. This layer indeed computes the maximum likelihood of F (") being
classi�ed into C$ , by averaging and summarizing the output of all neurons that belong to the same class as
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The last layer is the decision layer. It classi�es the pattern of F (") according to the Bayesian decision rule
given by

F (") 2 C$ if, C$
*
/$
*
1$!

*
F (")

+++
= '*+

1%%%$
/%
*
1%!

*
F (")

++
! (64)

Thus, the maximum of the summation node outputs can be expressed as a function of C$ (�) characterizing the
output of this layer.

Estimation of the Spread Parameter �. In the estimation of the spread parameter � we follow the method
proposed by Srinivasan et al.,37 which requires a phase of pre-normalization of the data consisting on subtracting
the mean �* (() from the training feature vector F ("), and also dividing it by its standard deviation !* (() . This
is formally de�ned as

bF (") = F (") ! �* (()

!* (()

; (65)

and then we can follow 3 steps to �nd an appropriate value for �. First, we estimate the variance for all
the features available for each class using bF ("). Second, �nd the absolute di¤erence between the smallest two
variances obtained in the previous step. Third, set the value representing the di¤erences obtained in the second
step into �.

4.#.2. Selection of Features and Events

The features selected for modeling the Dust Storm using PNN�s are the �rst four feature sets: F (1); ..., F (4), as
well as the reduced features F (5); ..., F (8). And the events were the same as in previous classi�cation methods.

#. E$PERIMENTS AND DISCUSSION

In this section we explain the training and testing methodology as well as the performance criteria. We also
present the results based on the performance and show visual results of the classi�cation.



#.1. Training Methodology

As established in the models for classi�cation of Dust Storms, we have millions of data points& available for the
design of the classi�cation methods. And precisely this an issue in the modeling of the PNN and FFNN. This
is because the PNN creates a pattern layer containing a number of neuron units which is directly proportional
to the number of training samples times the number of classes, which is an enormous quantity of data to be
processed. While in the FFNN, since the backpropagation training methods consider all the training data to �t
a multidimensional curve (or function) that separates the data into the di¤erent classes, it needs to propagate the
error across the layers of the network by updating the weights and biases. This number of times this operation
is performed is directly proportional to the number of neurons interconnected times the number of samples for
training times the number of adaptations required to meet the stop/continue condition.

For this reason we decided to limit the number of samples selected for training in the case of FFNN and
PNN. We based our reduction method on the criteria that establishes that the number of samples required for
training the networks must be at least 3 times the number of bands used as features.14 Therefore, in the PNN
design, we decided to use at least 3 times the size of the feature vector F ("), for - = 1!!!4, and 6 times the size
F ("), for - = 5!!!8. In the case of the FFNN, we utilized 500 times the size of F ("), for - = 1!!!4 , and 1000 times
its size for - = 5!!!8. We de�ne this selection as follows

2F (") =

3
44445

F
(1;")
!1

� � � F
(m;")
!1

F
(1;")
!2

� � � F
(m;")
!2

...
. . .

...

F
(1;")
!"

� � � F
(m;")
!"

6
77778
;

where

- =
)
uniform (1; +)1 ; uniform (1; +)2 ; � � � uniform (1; +)%

,
;

i = m' 4;

and m is number of columns in F ("), uniform(/; b) denotes a random number between / and b, + is the total
number of samples available for training (number of rows in F (")), i is the total number of samples to consider
in training, and 4 is the desired proportion to preserve. In our case 4 vary between 4 = 3; 6; 500; 1000.

Considering this, we can show the �nal selection of training samples in each Dust Storm classi�cation model.
Table 4 shows the features and samples utilized to design (or train) the classi�cation methods, as well as the
required preprocessing of the data (PNN case).

A Note in the Training of the FFNN. The neuron units in the i!th layer of the FFNN have hyperbolic
tangent sigmoid transfer functions (also known as tangsig), and at the output layer, the neuron unit has a
linear transfer function (purelin). The backpropagation method used to update the weights and biases is the
Levenberg-Marquardt optimization method (trainlm). Also as a learning function we used the gradient descent
with momentum weight and bias learning function (learngdm). The stop conditions for the FFNN are either: 1)
100 epochs, 2) Performance*0, 3)$alidation failures*5, and 4)Minimum performance gradient*1' 10!10. The
performance metric is the mean squared error (MSE). An internal set of training testing and validation was
randomly selected to internally evaluate the generalization ability of the network.

!Here a data point is a single element of a feature vector F (l). For instance, if the feature vector

F
(l) =

2

6

6

6

4

n1;1 n1;2 � � � n1;r
n2;1 n2;2 � � � n2;r
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7

7
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;

then n =[n1;1; n1;2; :::; n1;r], is considered a data point.



#.2. Testing Methodology

For testing purposes we select all the features for all the methods instead of a reduced subset of the available
data. Table 5 shows this con�guration and introduces an optional classi�cation set. That is to classify to two
classes instead of four. This is performed with no modi�cation of the architecture or models but rather in a
mapping post-classi�cation. Such mapping can be de�ned as a function of the classi�cation output as follows

F (") 2 C0 if

/
F (") 2 C0; or
F (") 2 SM; and

(66)

F (") 2 $U if

/
F (") 2 B'$U; or
F (") 2 $S; (67)

which will allow the system to classify only between background C0, and a new class name dust $U .

#.3. Performance Metric

Given the models for classi�cation of dust storms, and provided an input to them, there are four possible
outcomes. Suppose we know the input is dust storm $S and it is classi�ed as $S, it is counted as a true
positive (5P ); if it is classi�ed as maybe C0, it is counted as a false negative (FN). If the input is not $S and
it is not classi�ed as $S, it is counted as a true negative (5N); if it is classi�ed as $S, it is counted as a false
positive (FP ). Given a classi�er, the number of & classes, and a test set, a &-by-& confusion matrix (also called
a contingency table) can be constructed representing the dispositions of the test set. The numbers along the
major diagonal represent the correct decisions made, and the numbers o¤ this diagonal represent the errors (the
confusion) between the various classes. This matrix forms the basis for many common metrics, such as

fp rate &

#
FP

#
FP " 5N

;

tp rate &

#
5P

#
5P " FN

;

precision =

#
5P

#
5P " FP

;

accuracy =

#
5P " 5N

#
5P " FN " FP " 5N

;

recall =

#
5P

#
5P " FN

;

F !measure =
2

1
precision "

1
recall

;

sensitivity = recall

speci�city =

#
5N

#
FP " 5N

;

= 1! fp rate,
Positive Predictive $alue = precision.

Receiver Operating Characteristics. The Receiver Operating Characteristics38 (ROC) graphs are two-
dimensional graphs in which 5P rate is plotted on the 6 axis and FP rate is plotted on the x axis. A ROC
graph shows the relative trade-o¤s between bene�ts (true positives) and costs (false positives). The classi�cation



methods we have modeled, will be treated as discrete classi�er that outputs only a class label. Each discrete
classi�er produces an (fp rate, tp rate) pair corresponding to a single point in ROC space. Several aspects in the
ROC space are important to note. The lower left point (0; 0) represents the strategy of never issuing a positive
classi�cation; such a classi�er commits no false positive errors but also gains no true positives. The opposite
strategy, of unconditionally issuing positive classi�cations, is represented by the upper right point (1; 1). The
point (0; 1) represents perfect classi�cation. Informally, one point in ROC space is better than another if it is to
the northwest (tp rate is higher, fp rate is lower, or both) of the �rst. Classi�ers appearing on the left hand-side
of an ROC graph, near the x axis, may be thought of as "conservative": they make positive classi�cations only
with strong evidence so they make few false positive errors, but they often have low true positive rates as well.
Classi�ers on the upper right-hand side of an ROC graph may be thought of as "liberal": they make positive
classi�cations with weak evidence so they classify nearly all positives correctly, but they often have high false
positive rates. The diagonal line 6 = x represents the strategy of randomly guessing a class.

To compare classi�ers we may want to reduce ROC performance to a single scalar value representing expected
performance. A common method is to calculate the area under the ROC curve, abbreviated AUC. Since the
AUC is a portion of the area of the unit square, its value will always be between 0 and 1.0. However, because
random guessing produces the diagonal line between (0; 0) and (1; 1), which has an area of 0.5, no realistic
classi�er should have an AUC less than 0.5. The AUC has an important statistical property: the AUC of a
classi�er is equivalent to the probability that the classi�er will rank a randomly chosen positive instance higher
than a randomly chosen negative instance.

Although ROC curves may be used to evaluate classi�ers, care should be taken when using them to make
conclusions about classi�er superiority. Some researchers have assumed that an ROC graph may be used to
select the best classi�ers simply by graphing them in ROC space and seeing which ones dominate. This is
misleading; it is analogous to taking the maximum of a set of accuracy �gures from a single test set. Without a
measure of variance we cannot compare the classi�ers. Averaging ROC curves is easy if the original instances are
available. Therefore, in our models we have computed the AUC in each granule of information, 51:52: !!!:5n,
which are generated from independent events. Then, we can simply merge sort the instances together by their
assigned scores into one large test set 5M . We then plot a ROC with the result. However, the primary reason
for using multiple test sets is to derive a measure of variance, which in our case will be estimated from all the
test set.

#.4. Results

#.4.1. Testing Models on MODIS Level 1B Data: Quantitative Results

The numerical results are totalized and averaged to produce Table 6, where it is clear that the soft computing
methods have the best performance metrics. However, as pointed out previously, the best performance metric
is the AUC, thus, in general, the FFNN reports the best performance. Indeed, if the problem is simpli�ed to
the classi�cation of two classes, the FFNN still reports the highest AUC.

Then, the ROC�s were computed over test sets, and the average results along with the standard deviation
are shown in Figures 41-48. From this plots it is clear how the soft computing models FFNN and PNN perform
better than the probabilistic-based models. The same conclusions can be derived when the problem is simpli�ed
to a problem with two classes, and the corresponding ROC�s are shown in Figures 49-56.

From the overall ROC�s we have estimated the total averaged AUC, which is considered to be the most
accurate metric of performance. If the AUC value is high it is better. In Figure 57 and Table 8, the results
show that the highest area under the ROC is reported by the FFNN for the feature vector F (1). The result is
given when only two classes are considered, see also Figure 58 and Table 9.

To �nalize with the quantitative analysis of performance, we introduce the data in Table 10, Table 11, and
Table 12. This tables show the average proccessing time required by the model in order to produce an output
given an image, given a pixel, and given a satellite scan respectively. From this data we can observe that
the probabilistic methods are faster in comparison to the soft computing models as shown in Figure 59. This
property makes them suitable for near real time applications.



#.4.2. Qualitative Visual Analysis

The results of our algorithms are displayed for visual assessment of the outputs. Here we present �ve di¤erent
kinds of �gures, the �rst is a true color image re-projected using the traditional Mercator approach. Follows a
second graphic that shows the false color image of the same event, then, a third graphic show the probability
of presence of dust storm with a custom made color-scale. The fourth graphic is a low-resolution (decimated)
version of the third, and it is smoothed and displayed with a di¤erent color-scale (note that in spite they look
di¤erent, they are derived from the same high resolution result). And the �nal graphic is a segmentation image,
showing the actual mapping of the result: Red maps to $S, Green maps to B'$U , Blue maps to SM , and
Black is mapped to background (C0). In the case of the Probabilistic model designed for visual assessment of
probability only (Section 4.1) the latter kind of �gures is not available.

From Figures 60-490 are shown all the results organized by event class, then by model, then by kind of
visualization. In the Appendix B, we include true color images of some events which contain annotations
indicating some of the dust sources.

%. CONCLUSION

The problem of dust storm detection has been addressed in this paper. First, we constructed a database of
events from satellite observations of MODIS Terra satellite. This database was used to model the events trough
a phase of selection of regions of interest. Then, we have modeled probabilistic approaches for dust storm
detection and classi�cation, and the parameters were estimated from selected samples in the database. Indeed,
these models are specialized on measuring the probability of the presence of dust storm data given MODIS Level
1B data.

Novel techniques in Soft Computing were utilized to design neural architectures to model dust storms. To
the best of the knowledge of the authors, the presented models are the �rst in its kind that can actually perform
classi�cation of dust storms pixels based on soft computing methods. We compared the probabilistic models
such as Maximum Likelihood, MLE, and Maximum a posteriori, MAP, against the soft computing models such as
Feedforward Backpropagation Neural Network, FFNN, and Probabilistic Neural Network, PNN, having that the
latter report a strong ability in inferring the relationship between spectral bands to classify dust, and discriminate
from other signatures, such as clouds, smoke, etc.

Moreover, the proposed probabilistic models are suitable for near real-time applications, such as direct broad-
cast, rapid response analysis, emergency alerts, etc. The probabilistic models are suitable for fast prototyping
due to they simplicity, besides, the theory behind is easy to understand.

The work reported in this document is suitable for the study of the dust storm problem since the algorithms
can show the dust presence to a resolution of 1km, which is an improvement over the methods based on the
Aerosol Optical Thickness index (AOT) which lack of resolution. Besides, the AOT MODIS product is generated
after two days of the satellite pass, increasing the response time in the analysis and study of the dust storms.

%.1. Future Work

The work reported in this document is part of an initiative from UTEP dedicated to develop better tools for the
analysis of the dust storms. In the next stage of this work, we will detect the sources, orientation, and severity
of the dust storms, aided with the output of the models presented in this paper.

An improvement in the process of classi�cation on the neural networks, particularly in the PNN, is required.
For this case we will use the tool named Recursive Hierarchical Segmentation (RHSEG) designed and developed
by the author (J.C.T.). This tool provides multiple segmented regions based on they similarity, and outputs
their statistical data (mean and standard deviation). Therefore, the output of RHSEG can be used to match
the best n candidates closer to the values of �

g
�

X
(Bm)
n

� and �2
g
�

X
(Bm)
n

� modeled in Section 4.1.1. This will

decrease dramatically the processing time of the PNN classi�cation up to a 95& less, as measured in preliminary
laboratory tests.

A near real time application follows this work. The MLE model will be implemented in the Simulcast $iewer
(client) application provided by NASA�s Direct Readout Laboratory (DRL). The aim of this implementation is
to test the ability to perform in near real time, as well as its application in rapid response systems.
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APPENDI$ A. TABLES AND FIGURES



Figure 1. Dust storms hitting El Paso, TX, urban areas on June 08 2004 arround 6pm. Below, is a satellite image of
the el paso area a few hours before the storm.



Figure 2. Observation of dust residence time on the southwestern US and north of mexico. The graphic shows the
residence time probability for all months from 2001 to 2005. The residence time probability !!1!2 !"1 = #; "2 = $" is
de�ned as the number of back trajectory endpoints in a given grid cell (in this case, 0.25 deg latitude by 0.25 deg longitude)
over a speci�ed time interval, and it is formally de�ned as !!1!2 !"1 = #; "2 = $" =

1
"

!#

$!1 "1$"2$, where "1$"2$ is the
number of endpoints falling in a grid cell at longitude "1 = # and latitude "2 = $ before the trajectory arrived at the
receptor during measurement period %, & is the total number of time periods and ' is the total number of endpoints
troughout & . More details in (Nancy et al., 2009).1



Figure 3. True color example from a random dust storm event. MODIS multiespectral bands are assigned to the RGB
composite as follows: R*(#, G*($, B*(%. In this example, the non-usable pixel elements were approximated to
produce an adecuate picture.



Figure 4. A false color image of the same event in Figure 3. The dust regions in this visualization look in pink color. In
this case the false color is generated by mapping the RGB composite to MODIS multiespectral bands as follows: R*(&',
G*(%#, B*(%&.



Figure #. Example of a band subtraction grayscale result for the event in Figure 3. The bands subtracted are (%&!(%#,
the results are displayed in grayscale. The dust regions are shown in near white color.

Figure %. Process of estimation of true data based on unusable pixel data and uncertainty indexes.



Figure &. On the left, input data with high uncertainty and unusable data. On the middle, the given uncertainty index
)*%;n. And in the right, its the result of the proposed method.



Figure '. Total histogram in percent, and the estimated parameters using three methods. MODIS 16-bit image data
for band subtraction (%&! %#:



Figure *. Total histogram in percent, and the estimated parameters using three parameter estimation methods. MODIS
8-bit image data for band subtraction (%&! %#:



Figure 1+. Total histogram in percent, using the three parameter estimation methods. These are MODIS recovered
radiances from the band subtraction (%&! %#:



Figure 11. Distribution of feature vector F (1) when two of its components are ploted. In this case the "-axis correspond
to (&', while the +-axis correspond to (%&, raw intensities.



Figure 12. Distribution of feature vector F (2) when two of its components are ploted. In this case the "-axis correspond
to (&', while the +-axis correspond to (%&, recovered radiances.



Figure 13. Distribution of feature vector F (") when two of its components are ploted. In this case the "-axis correspond
to (#, while the +-axis correspond to (%, raw 8-bit intensities.



Figure 14. Distribution of feature vector F (#) when two of its components are ploted. In this case the "-axis correspond
to (%#, while the +-axis correspond to (%&! %#, raw 8-bit intensities.



Figure 1#. Histogram and estimated distribution of !
!
(B2"I1#)
'

!,
(%2$I1#)
& = "".



Figure 1%. Histogram and estimated distribution of !
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Figure 1'. Histogram and estimated distribution of !
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Figure 3+. Histogram and estimated distribution of !
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Figure 31. Process of estimation of !
!
(Bm)
n

#'!

"

,
(%()
n = ""-) = .

#

through segmentation (using masks). Regions

obtained for each band after segmentation are analyzed for the �nal estimation of parameters. The mask is associated
with a particular class -) such that we can associate the segmented data to the $!th class. Then, the data is stored in a
set that contains all the samples for the same class, and the process is repeated until the data collection and segmentation
is �nished for all the events selected for modeling. A statistical analysis is followed, in which the mean vectors and the
covariance matrices are computed for each class features. Note that the ()*1$ was computed for B1, B4, and B3 only for
visualization purposes in this example. The current analysis consider the data as in F (") (without the logarithm).



Figure 32. A comparison between di¤erent distribution �tting and estimation. Here the "-axis (Data) is the raw
intensity of (&'.



Figure 33. Estimated probability mass function of !'! !-) = .".



Figure 34. Logarithm of estimated probability mass function, ()*1$
$

!'! !-) = ."
%

.



Figure 3#. General architecture, parameters and information �ow for a Multilayered Feedforward Backpropagation
Neural Network.



Figure 3%. Distribution of feature vector F (&) when two of its principal components are ploted.



Figure 3&. Distribution of feature vector F (') when two of its principal components are ploted.



Figure 3'. Distribution of feature vector F (*) when two of its principal components are ploted.



Figure 3*. Distribution of feature vector F (+) when two of its principal components are ploted.



Figure 4+. Diagram of the architecture of a Probabilistic Neural Network.



Figure 41. Averaged ROC�s for the feature vector F (1). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 42. Averaged ROC�s for the feature vector F (2). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 43. Averaged ROC�s for the feature vector F ("). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 44. Averaged ROC�s for the feature vector F (#). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 4#. Averaged ROC�s for the feature vector F (&). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 4%. Averaged ROC�s for the feature vector F ('). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 4&. Averaged ROC�s for the feature vector F (*). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 4'. Averaged ROC�s for the feature vector F (+). This plot show a comparison between the four classi�cation
methods. The standard deviation is included to see the stability associated.



Figure 4*. Averaged ROC�s for the feature vector F (1) simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #+. Averaged ROC�s for the feature vector F (2) simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #1. Averaged ROC�s for the feature vector F (") simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #2. Averaged ROC�s for the feature vector F (#) simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #3. Averaged ROC�s for the feature vector F (&) simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #4. Averaged ROC�s for the feature vector F (') simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure ##. Averaged ROC�s for the feature vector F (*) simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #%. Averaged ROC�s for the feature vector F (+) simplifying the problem into two classes. This plot show a
comparison between the four classi�cation methods. The standard deviation is included to see the stability associated.



Figure #&. Averaged total area under the ROC curve. Clearly, FFNN performs better than the others.



Figure #'. Averaged total area under the ROC curve, for the classi�cation of two classes only. Clearly, FFNN performs
better than the others.



Figure #*. Processing time required to produce an output givem a satellite scan (in the case of MODIS terra multiespectral
bands, a scan will be of size [+ # #%+$] in the case of F (1)). It is evident and intuitive that the probabilistic methods
produce faster outputs.



Figure %+. True color image for the event of 2001-096 at 18:30 UTC.



Figure %1. Result of the probabilistic display model (PD) for the event of 2001-096 at 18:30 UTC. The colorbar shows
the index of probability.



Figure %2. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2001-096 at 18:30
UTC. The colorbar shows the index of probability.



Figure %3. Result of the Maximum Likelihood model (MLE) for the event of 2001-096 at 18:30 UTC. The colorbar shows
the index of probability.



Figure %4. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2001-096 at 18:30
UTC. The colorbar shows the index of probability.



Figure %#. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2001-096 at 18:30 UTC.



Figure %%. Result of the Maximum a posteriori model (MAP) for the event of 2001-096 at 18:30 UTC. The colorbar
shows the index of probability.



Figure %&. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2001-096 at
18:30 UTC. The colorbar shows the index of probability.



Figure %'. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2001-096 at 18:30 UTC.



Figure %*. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-096 at 18:30 UTC.
The colorbar shows the index of probability.



Figure &+. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2001-096 at 18:30 UTC. The colorbar shows the index of probability.



Figure &1. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-096
at 18:30 UTC.



Figure &2. Result of the Probabilistic Neural Network (PNN) for the event of 2001-096 at 18:30 UTC. The colorbar
shows the index of probability.



Figure &3. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2001-096 at
18:30 UTC. The colorbar shows the index of probability.



Figure &4. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2001-096 at 18:30 UTC.



Figure &#. True color image for the event of 2001-100 at 18:05 UTC.



Figure &%. False color image for the event of 2001-100 at 18:05 UTC.



Figure &&. Result of the probabilistic display model (PD) for the event of 2001-100 at 18:05 UTC. The colorbar shows
the index of probability.



Figure &'. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2001-100 at 18:05
UTC. The colorbar shows the index of probability.



Figure &*. Result of the Maximum Likelihood model (MLE) for the event of 2001-100 at 18:05 UTC. The colorbar shows
the index of probability.



Figure '+. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2001-100 at 18:05
UTC. The colorbar shows the index of probability.



Figure '1. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2001-100 at 18:05 UTC.



Figure '2. Result of the Maximum a posteriori model (MAP) for the event of 2001-100 at 18:05 UTC. The colorbar
shows the index of probability.



Figure '3. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2001-100 at
18:05 UTC. The colorbar shows the index of probability.



Figure '4. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2001-100 at 18:05 UTC.



Figure '#. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-100 at 18:05 UTC.
The colorbar shows the index of probability.



Figure '%. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2001-100 at 18:05 UTC. The colorbar shows the index of probability.



Figure '&. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-100
at 18:05 UTC.



Figure ''. Result of the Probabilistic Neural Network (PNN) for the event of 2001-100 at 18:05 UTC. The colorbar
shows the index of probability.



Figure '*. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2001-100 at
18:05 UTC. The colorbar shows the index of probability.



Figure *+. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2001-100 at 18:05 UTC.



Figure *1. True color image for the event of 2002-183 at 17:55 UTC.



Figure *2. False color image for the event of 2002-183 at 17:55 UTC.



Figure *3. Result of the probabilistic display model (PD) for the event of 2002-183 at 17:55 UTC. The colorbar shows
the index of probability.



Figure *4. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2002-183 at 17:55
UTC. The colorbar shows the index of probability.



Figure *#. Result of the Maximum Likelihood model (MLE) for the event of 2002-183 at 17:55 UTC. The colorbar shows
the index of probability.



Figure *%. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2002-183 at 17:55
UTC. The colorbar shows the index of probability.



Figure *&. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2002-183 at 17:55 UTC.



Figure *'. Result of the Maximum a posteriori model (MAP) for the event of 2002-183 at 17:55 UTC. The colorbar
shows the index of probability.



Figure **. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2002-183 at
17:55 UTC. The colorbar shows the index of probability.



Figure 1++. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2002-183 at 17:55 UTC.



Figure 1+1. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-183 at 17:55
UTC. The colorbar shows the index of probability.



Figure 1+2. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2002-183 at 17:55 UTC. The colorbar shows the index of probability.



Figure 1+3. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-183
at 17:55 UTC.



Figure 1+4. Result of the Probabilistic Neural Network (PNN) for the event of 2002-183 at 17:55 UTC. The colorbar
shows the index of probability.



Figure 1+#. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2002-183 at
17:55 UTC. The colorbar shows the index of probability.



Figure 1+%. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2002-183 at 17:55 UTC.



Figure 1+&. True color image for the event of 2002-351 at 18:45 UTC.



Figure 1+'. False color image for the event of 2002-351 at 18:45 UTC.



Figure 1+*. Result of the probabilistic display model (PD) for the event of 2002-351 at 18:45 UTC. The colorbar shows
the index of probability.



Figure 11+. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2002-351 at 18:45
UTC. The colorbar shows the index of probability.



Figure 111. Result of the Maximum Likelihood model (MLE) for the event of 2002-351 at 18:45 UTC. The colorbar
shows the index of probability.



Figure 112. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2002-351 at
18:45 UTC. The colorbar shows the index of probability.



Figure 113. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2002-351 at 18:45 UTC.



Figure 114. Result of the Maximum a posteriori model (MAP) for the event of 2002-351 at 18:45 UTC. The colorbar
shows the index of probability.



Figure 11#. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2002-351 at
18:45 UTC. The colorbar shows the index of probability.



Figure 11%. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2002-351 at 18:45 UTC.



Figure 11&. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-351 at 18:45
UTC. The colorbar shows the index of probability.



Figure 11'. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2002-351 at 18:45 UTC. The colorbar shows the index of probability.



Figure 11*. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-351
at 18:45 UTC.



Figure 12+. Result of the Probabilistic Neural Network (PNN) for the event of 2002-351 at 18:45 UTC. The colorbar
shows the index of probability.



Figure 121. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2002-351 at
18:45 UTC. The colorbar shows the index of probability.



Figure 122. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2002-351 at 18:45 UTC.



Figure 123. True color image for the event of 2003-105 at 17:10 UTC.



Figure 124. False color image for the event of 2003-105 at 17:10 UTC.



Figure 12#. Result of the probabilistic display model (PD) for the event of 2003-105 at 17:10 UTC. The colorbar shows
the index of probability.



Figure 12%. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-105 at 17:10
UTC. The colorbar shows the index of probability.



Figure 12&. Result of the Maximum Likelihood model (MLE) for the event of 2003-105 at 17:10 UTC. The colorbar
shows the index of probability.



Figure 12'. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-105 at
17:10 UTC. The colorbar shows the index of probability.



Figure 12*. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-105 at 17:10 UTC.



Figure 13+. Result of the Maximum a posteriori model (MAP) for the event of 2003-105 at 17:10 UTC. The colorbar
shows the index of probability.



Figure 131. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-105 at
17:10 UTC. The colorbar shows the index of probability.



Figure 132. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-105 at 17:10 UTC.



Figure 133. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-105 at 17:10
UTC. The colorbar shows the index of probability.



Figure 134. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-105 at 17:10 UTC. The colorbar shows the index of probability.



Figure 13#. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-105
at 17:10 UTC.



Figure 13%. Result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at 17:10 UTC. The colorbar
shows the index of probability.



Figure 13&. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at
17:10 UTC. The colorbar shows the index of probability.



Figure 13'. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at 17:10 UTC.



Figure 13*. True color image for the event of 2003-105 at 17:15 UTC.



Figure 14+. False color image for the event of 2003-105 at 17:15 UTC.



Figure 141. Result of the probabilistic display model (PD) for the event of 2003-105 at 17:15 UTC. The colorbar shows
the index of probability.



Figure 142. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-105 at 17:15
UTC. The colorbar shows the index of probability.



Figure 143. Result of the Maximum Likelihood model (MLE) for the event of 2003-105 at 17:15 UTC. The colorbar
shows the index of probability.



Figure 144. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-105 at
17:15 UTC. The colorbar shows the index of probability.



Figure 14#. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-105 at 17:15 UTC.



Figure 14%. Result of the Maximum a posteriori model (MAP) for the event of 2003-105 at 17:15 UTC. The colorbar
shows the index of probability.



Figure 14&. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-105 at
17:15 UTC. The colorbar shows the index of probability.



Figure 14'. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-105 at 17:15 UTC.



Figure 14*. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-105 at 17:15
UTC. The colorbar shows the index of probability.



Figure 1#+. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-105 at 17:15 UTC. The colorbar shows the index of probability.



Figure 1#1. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-105
at 17:15 UTC.



Figure 1#2. Result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at 17:15 UTC. The colorbar
shows the index of probability.



Figure 1#3. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at
17:15 UTC. The colorbar shows the index of probability.



Figure 1#4. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at 17:15 UTC.



Figure 1##. True color image for the event of 2003-105 at 18:50 UTC.



Figure 1#%. False color image for the event of 2003-105 at 18:50 UTC.



Figure 1#&. Result of the probabilistic display model (PD) for the event of 2003-105 at 18:50 UTC. The colorbar shows
the index of probability.



Figure 1#'. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-105 at 18:50
UTC. The colorbar shows the index of probability.



Figure 1#*. Result of the Maximum Likelihood model (MLE) for the event of 2003-105 at 18:50 UTC. The colorbar
shows the index of probability.



Figure 1%+. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-105 at
18:50 UTC. The colorbar shows the index of probability.



Figure 1%1. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-105 at 18:50 UTC.



Figure 1%2. Result of the Maximum a posteriori model (MAP) for the event of 2003-105 at 18:50 UTC. The colorbar
shows the index of probability.



Figure 1%3. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-105 at
18:50 UTC. The colorbar shows the index of probability.



Figure 1%4. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-105 at 18:50 UTC.



Figure 1%#. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-105 at 18:50
UTC. The colorbar shows the index of probability.



Figure 1%%. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-105 at 18:50 UTC. The colorbar shows the index of probability.



Figure 1%&. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-105
at 18:50 UTC.



Figure 1%'. Result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at 18:50 UTC. The colorbar
shows the index of probability.



Figure 1%*. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at
18:50 UTC. The colorbar shows the index of probability.



Figure 1&+. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-105 at 18:50 UTC.



Figure 1&1. True color image for the event of 2003-326 at 18:20 UTC.



Figure 1&2. False color image for the event of 2003-326 at 18:20 UTC.



Figure 1&3. Result of the probabilistic display model (PD) for the event of 2003-326 at 18:20 UTC. The colorbar shows
the index of probability.



Figure 1&4. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-326 at 18:20
UTC. The colorbar shows the index of probability.



Figure 1&#. Result of the Maximum Likelihood model (MLE) for the event of 2003-326 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 1&%. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-326 at
18:20 UTC. The colorbar shows the index of probability.



Figure 1&&. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-326 at 18:20 UTC.



Figure 1&'. Result of the Maximum a posteriori model (MAP) for the event of 2003-326 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 1&*. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-326 at
18:20 UTC. The colorbar shows the index of probability.



Figure 1'+. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-326 at 18:20 UTC.



Figure 1'1. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-326 at 18:20
UTC. The colorbar shows the index of probability.



Figure 1'2. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-326 at 18:20 UTC. The colorbar shows the index of probability.



Figure 1'3. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-326
at 18:20 UTC.



Figure 1'4. Result of the Probabilistic Neural Network (PNN) for the event of 2003-326 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 1'#. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-326 at
18:20 UTC. The colorbar shows the index of probability.



Figure 1'%. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-326 at 18:20 UTC.



Figure 1'&. True color image for the event of 2003-349 at 18:25 UTC.



Figure 1''. False color image for the event of 2003-349 at 18:25 UTC.



Figure 1'*. Result of the probabilistic display model (PD) for the event of 2003-349 at 18:25 UTC. The colorbar shows
the index of probability.



Figure 1*+. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-349 at 18:25
UTC. The colorbar shows the index of probability.



Figure 1*1. Result of the Maximum Likelihood model (MLE) for the event of 2003-349 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 1*2. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-349 at
18:25 UTC. The colorbar shows the index of probability.



Figure 1*3. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-349 at 18:25 UTC.



Figure 1*4. Result of the Maximum a posteriori model (MAP) for the event of 2003-349 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 1*#. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-349 at
18:25 UTC. The colorbar shows the index of probability.



Figure 1*%. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-349 at 18:25 UTC.



Figure 1*&. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-349 at 18:25
UTC. The colorbar shows the index of probability.



Figure 1*'. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-349 at 18:25 UTC. The colorbar shows the index of probability.



Figure 1**. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-349
at 18:25 UTC.



Figure 2++. Result of the Probabilistic Neural Network (PNN) for the event of 2003-349 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 2+1. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-349 at
18:25 UTC. The colorbar shows the index of probability.



Figure 2+2. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-349 at 18:25 UTC.



Figure 2+3. True color image for the event of 2004-050 at 18:15 UTC.



Figure 2+4. False color image for the event of 2004-050 at 18:15 UTC.



Figure 2+#. Result of the probabilistic display model (PD) for the event of 2004-050 at 18:15 UTC. The colorbar shows
the index of probability.



Figure 2+%. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2004-050 at 18:15
UTC. The colorbar shows the index of probability.



Figure 2+&. Result of the Maximum Likelihood model (MLE) for the event of 2004-050 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 2+'. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2004-050 at
18:15 UTC. The colorbar shows the index of probability.



Figure 2+*. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2004-050 at 18:15 UTC.



Figure 21+. Result of the Maximum a posteriori model (MAP) for the event of 2004-050 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 211. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2004-050 at
18:15 UTC. The colorbar shows the index of probability.



Figure 212. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2004-050 at 18:15 UTC.



Figure 213. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2004-050 at 18:15
UTC. The colorbar shows the index of probability.



Figure 214. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2004-050 at 18:15 UTC. The colorbar shows the index of probability.



Figure 21#. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2004-050
at 18:15 UTC.



Figure 21%. Result of the Probabilistic Neural Network (PNN) for the event of 2004-050 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 21&. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2004-050 at
18:15 UTC. The colorbar shows the index of probability.



Figure 21'. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2004-050 at 18:15 UTC.



Figure 21*. True color image for the event of 2005-331 at 18:20 UTC.



Figure 22+. False color image for the event of 2005-331 at 18:20 UTC.



Figure 221. Result of the probabilistic display model (PD) for the event of 2005-331 at 18:20 UTC. The colorbar shows
the index of probability.



Figure 222. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2005-331 at 18:20
UTC. The colorbar shows the index of probability.



Figure 223. Result of the Maximum Likelihood model (MLE) for the event of 2005-331 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 224. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2005-331 at
18:20 UTC. The colorbar shows the index of probability.



Figure 22#. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2005-331 at 18:20 UTC.



Figure 22%. Result of the Maximum a posteriori model (MAP) for the event of 2005-331 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 22&. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2005-331 at
18:20 UTC. The colorbar shows the index of probability.



Figure 22'. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2005-331 at 18:20 UTC.



Figure 22*. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2005-331 at 18:20
UTC. The colorbar shows the index of probability.



Figure 23+. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2005-331 at 18:20 UTC. The colorbar shows the index of probability.



Figure 231. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2005-331
at 18:20 UTC.



Figure 232. Result of the Probabilistic Neural Network (PNN) for the event of 2005-331 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 233. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2005-331 at
18:20 UTC. The colorbar shows the index of probability.



Figure 234. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2005-331 at 18:20 UTC.



Figure 23#. True color image for the event of 2001-164 at 18:05 UTC.



Figure 23%. False color image for the event of 2001-164 at 18:05 UTC.



Figure 23&. Result of the probabilistic display model (PD) for the event of 2001-164 at 18:05 UTC. The colorbar shows
the index of probability.



Figure 23'. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2001-164 at 18:05
UTC. The colorbar shows the index of probability.



Figure 23*. Result of the Maximum Likelihood model (MLE) for the event of 2001-164 at 18:05 UTC. The colorbar
shows the index of probability.



Figure 24+. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2001-164 at
18:05 UTC. The colorbar shows the index of probability.



Figure 241. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2001-164 at 18:05 UTC.



Figure 242. Result of the Maximum a posteriori model (MAP) for the event of 2001-164 at 18:05 UTC. The colorbar
shows the index of probability.



Figure 243. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2001-164 at
18:05 UTC. The colorbar shows the index of probability.



Figure 244. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2001-164 at 18:05 UTC.



Figure 24#. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-164 at 18:05
UTC. The colorbar shows the index of probability.



Figure 24%. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2001-164 at 18:05 UTC. The colorbar shows the index of probability.



Figure 24&. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-164
at 18:05 UTC.



Figure 24'. Result of the Probabilistic Neural Network (PNN) for the event of 2001-164 at 18:05 UTC. The colorbar
shows the index of probability.



Figure 24*. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2001-164 at
18:05 UTC. The colorbar shows the index of probability.



Figure 2#+. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2001-164 at 18:05 UTC.



Figure 2#1. True color image for the event of 2001-327 at 18:30 UTC.



Figure 2#2. False color image for the event of 2001-327 at 18:30 UTC.



Figure 2#3. Result of the probabilistic display model (PD) for the event of 2001-327 at 18:30 UTC. The colorbar shows
the index of probability.



Figure 2#4. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2001-327 at 18:30
UTC. The colorbar shows the index of probability.



Figure 2##. Result of the Maximum Likelihood model (MLE) for the event of 2001-327 at 18:30 UTC. The colorbar
shows the index of probability.



Figure 2#%. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2001-327 at
18:30 UTC. The colorbar shows the index of probability.



Figure 2#&. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2001-327 at 18:30 UTC.



Figure 2#'. Result of the Maximum a posteriori model (MAP) for the event of 2001-327 at 18:30 UTC. The colorbar
shows the index of probability.



Figure 2#*. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2001-327 at
18:30 UTC. The colorbar shows the index of probability.



Figure 2%+. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2001-327 at 18:30 UTC.



Figure 2%1. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-327 at 18:30
UTC. The colorbar shows the index of probability.



Figure 2%2. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2001-327 at 18:30 UTC. The colorbar shows the index of probability.



Figure 2%3. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2001-327
at 18:30 UTC.



Figure 2%4. Result of the Probabilistic Neural Network (PNN) for the event of 2001-327 at 18:30 UTC. The colorbar
shows the index of probability.



Figure 2%#. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2001-327 at
18:30 UTC. The colorbar shows the index of probability.



Figure 2%%. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2001-327 at 18:30 UTC.



Figure 2%&. True color image for the event of 2002-060 at 18:15 UTC.



Figure 2%'. False color image for the event of 2002-060 at 18:15 UTC.



Figure 2%*. Result of the probabilistic display model (PD) for the event of 2002-060 at 18:15 UTC. The colorbar shows
the index of probability.



Figure 2&+. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2002-060 at 18:15
UTC. The colorbar shows the index of probability.



Figure 2&1. Result of the Maximum Likelihood model (MLE) for the event of 2002-060 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 2&2. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2002-060 at
18:15 UTC. The colorbar shows the index of probability.



Figure 2&3. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2002-060 at 18:15 UTC.



Figure 2&4. Result of the Maximum a posteriori model (MAP) for the event of 2002-060 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 2&#. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2002-060 at
18:15 UTC. The colorbar shows the index of probability.



Figure 2&%. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2002-060 at 18:15 UTC.



Figure 2&&. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-060 at 18:15
UTC. The colorbar shows the index of probability.



Figure 2&'. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2002-060 at 18:15 UTC. The colorbar shows the index of probability.



Figure 2&*. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-060
at 18:15 UTC.



Figure 2'+. Result of the Probabilistic Neural Network (PNN) for the event of 2002-060 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 2'1. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2002-060 at
18:15 UTC. The colorbar shows the index of probability.



Figure 2'2. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2002-060 at 18:15 UTC.



Figure 2'3. True color image for the event of 2002-067 at 18:20 UTC.



Figure 2'4. False color image for the event of 2002-067 at 18:20 UTC.



Figure 2'#. Result of the probabilistic display model (PD) for the event of 2002-067 at 18:20 UTC. The colorbar shows
the index of probability.



Figure 2'%. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2002-067 at 18:20
UTC. The colorbar shows the index of probability.



Figure 2'&. Result of the Maximum Likelihood model (MLE) for the event of 2002-067 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 2''. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2002-067 at
18:20 UTC. The colorbar shows the index of probability.



Figure 2'*. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2002-067 at 18:20 UTC.



Figure 2*+. Result of the Maximum a posteriori model (MAP) for the event of 2002-067 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 2*1. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2002-067 at
18:20 UTC. The colorbar shows the index of probability.



Figure 2*2. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2002-067 at 18:20 UTC.



Figure 2*3. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-067 at 18:20
UTC. The colorbar shows the index of probability.



Figure 2*4. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2002-067 at 18:20 UTC. The colorbar shows the index of probability.



Figure 2*#. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-067
at 18:20 UTC.



Figure 2*%. Result of the Probabilistic Neural Network (PNN) for the event of 2002-067 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 2*&. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2002-067 at
18:20 UTC. The colorbar shows the index of probability.



Figure 2*'. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2002-067 at 18:20 UTC.



Figure 2**. True color image for the event of 2002-073 at 17:45 UTC.



Figure 3++. False color image for the event of 2002-073 at 17:45 UTC.



Figure 3+1. Result of the probabilistic display model (PD) for the event of 2002-073 at 17:45 UTC. The colorbar shows
the index of probability.



Figure 3+2. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2002-073 at 17:45
UTC. The colorbar shows the index of probability.



Figure 3+3. Result of the Maximum Likelihood model (MLE) for the event of 2002-073 at 17:45 UTC. The colorbar
shows the index of probability.



Figure 3+4. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2002-073 at
17:45 UTC. The colorbar shows the index of probability.



Figure 3+#. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2002-073 at 17:45 UTC.



Figure 3+%. Result of the Maximum a posteriori model (MAP) for the event of 2002-073 at 17:45 UTC. The colorbar
shows the index of probability.



Figure 3+&. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2002-073 at
17:45 UTC. The colorbar shows the index of probability.



Figure 3+'. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2002-073 at 17:45 UTC.



Figure 3+*. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-073 at 17:45
UTC. The colorbar shows the index of probability.



Figure 31+. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2002-073 at 17:45 UTC. The colorbar shows the index of probability.



Figure 311. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-073
at 17:45 UTC.



Figure 312. Result of the Probabilistic Neural Network (PNN) for the event of 2002-073 at 17:45 UTC. The colorbar
shows the index of probability.



Figure 313. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2002-073 at
17:45 UTC. The colorbar shows the index of probability.



Figure 314. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2002-073 at 17:45 UTC.



Figure 31#. True color image for the event of 2002-120 at 18:40 UTC.



Figure 31%. False color image for the event of 2002-120 at 18:40 UTC.



Figure 31&. Result of the probabilistic display model (PD) for the event of 2002-120 at 18:40 UTC. The colorbar shows
the index of probability.



Figure 31'. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2002-120 at 18:40
UTC. The colorbar shows the index of probability.



Figure 31*. Result of the Maximum Likelihood model (MLE) for the event of 2002-120 at 18:40 UTC. The colorbar
shows the index of probability.



Figure 32+. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2002-120 at
18:40 UTC. The colorbar shows the index of probability.



Figure 321. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2002-120 at 18:40 UTC.



Figure 322. Result of the Maximum a posteriori model (MAP) for the event of 2002-120 at 18:40 UTC. The colorbar
shows the index of probability.



Figure 323. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2002-120 at
18:40 UTC. The colorbar shows the index of probability.



Figure 324. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2002-120 at 18:40 UTC.



Figure 32#. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-120 at 18:40
UTC. The colorbar shows the index of probability.



Figure 32%. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2002-120 at 18:40 UTC. The colorbar shows the index of probability.



Figure 32&. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2002-120
at 18:40 UTC.



Figure 32'. Result of the Probabilistic Neural Network (PNN) for the event of 2002-120 at 18:40 UTC. The colorbar
shows the index of probability.



Figure 32*. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2002-120 at
18:40 UTC. The colorbar shows the index of probability.



Figure 33+. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2002-120 at 18:40 UTC.



Figure 331. True color image for the event of 2003-077 at 18:25 UTC.



Figure 332. False color image for the event of 2003-077 at 18:25 UTC.



Figure 333. Result of the probabilistic display model (PD) for the event of 2003-077 at 18:25 UTC. The colorbar shows
the index of probability.



Figure 334. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-077 at 18:25
UTC. The colorbar shows the index of probability.



Figure 33#. Result of the Maximum Likelihood model (MLE) for the event of 2003-077 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 33%. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-077 at
18:25 UTC. The colorbar shows the index of probability.



Figure 33&. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-077 at 18:25 UTC.



Figure 33'. Result of the Maximum a posteriori model (MAP) for the event of 2003-077 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 33*. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-077 at
18:25 UTC. The colorbar shows the index of probability.



Figure 34+. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-077 at 18:25 UTC.



Figure 341. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-077 at 18:25
UTC. The colorbar shows the index of probability.



Figure 342. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-077 at 18:25 UTC. The colorbar shows the index of probability.



Figure 343. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-077
at 18:25 UTC.



Figure 344. Result of the Probabilistic Neural Network (PNN) for the event of 2003-077 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 34#. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-077 at
18:25 UTC. The colorbar shows the index of probability.



Figure 34%. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-077 at 18:25 UTC.



Figure 34&. True color image for the event of 2003-078 at 17:30 UTC.



Figure 34'. False color image for the event of 2003-078 at 17:30 UTC.



Figure 34*. Result of the probabilistic display model (PD) for the event of 2003-078 at 17:30 UTC. The colorbar shows
the index of probability.



Figure 3#+. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-078 at 17:30
UTC. The colorbar shows the index of probability.



Figure 3#1. Result of the Maximum Likelihood model (MLE) for the event of 2003-078 at 17:30 UTC. The colorbar
shows the index of probability.



Figure 3#2. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-078 at
17:30 UTC. The colorbar shows the index of probability.



Figure 3#3. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-078 at 17:30 UTC.



Figure 3#4. Result of the Maximum a posteriori model (MAP) for the event of 2003-078 at 17:30 UTC. The colorbar
shows the index of probability.



Figure 3##. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-078 at
17:30 UTC. The colorbar shows the index of probability.



Figure 3#%. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-078 at 17:30 UTC.



Figure 3#&. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-078 at 17:30
UTC. The colorbar shows the index of probability.



Figure 3#'. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-078 at 17:30 UTC. The colorbar shows the index of probability.



Figure 3#*. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-078
at 17:30 UTC.



Figure 3%+. Result of the Probabilistic Neural Network (PNN) for the event of 2003-078 at 17:30 UTC. The colorbar
shows the index of probability.



Figure 3%1. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-078 at
17:30 UTC. The colorbar shows the index of probability.



Figure 3%2. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-078 at 17:30 UTC.



Figure 3%3. True color image for the event of 2003-086 at 18:20 UTC.



Figure 3%4. False color image for the event of 2003-086 at 18:20 UTC.



Figure 3%#. Result of the probabilistic display model (PD) for the event of 2003-086 at 18:20 UTC. The colorbar shows
the index of probability.



Figure 3%%. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-086 at 18:20
UTC. The colorbar shows the index of probability.



Figure 3%&. Result of the Maximum Likelihood model (MLE) for the event of 2003-086 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 3%'. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-086 at
18:20 UTC. The colorbar shows the index of probability.



Figure 3%*. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-086 at 18:20 UTC.



Figure 3&+. Result of the Maximum a posteriori model (MAP) for the event of 2003-086 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 3&1. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-086 at
18:20 UTC. The colorbar shows the index of probability.



Figure 3&2. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-086 at 18:20 UTC.



Figure 3&3. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-086 at 18:20
UTC. The colorbar shows the index of probability.



Figure 3&4. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-086 at 18:20 UTC. The colorbar shows the index of probability.



Figure 3&#. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-086
at 18:20 UTC.



Figure 3&%. Result of the Probabilistic Neural Network (PNN) for the event of 2003-086 at 18:20 UTC. The colorbar
shows the index of probability.



Figure 3&&. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-086 at
18:20 UTC. The colorbar shows the index of probability.



Figure 3&'. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-086 at 18:20 UTC.



Figure 3&*. True color image for the event of 2003-113 at 18:00 UTC.



Figure 3'+. False color image for the event of 2003-113 at 18:00 UTC.



Figure 3'1. Result of the probabilistic display model (PD) for the event of 2003-113 at 18:00 UTC. The colorbar shows
the index of probability.



Figure 3'2. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-113 at 18:00
UTC. The colorbar shows the index of probability.



Figure 3'3. Result of the Maximum Likelihood model (MLE) for the event of 2003-113 at 18:00 UTC. The colorbar
shows the index of probability.



Figure 3'4. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-113 at
18:00 UTC. The colorbar shows the index of probability.



Figure 3'#. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-113 at 18:00 UTC.



Figure 3'%. Result of the Maximum a posteriori model (MAP) for the event of 2003-113 at 18:00 UTC. The colorbar
shows the index of probability.



Figure 3'&. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-113 at
18:00 UTC. The colorbar shows the index of probability.



Figure 3''. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-113 at 18:00 UTC.



Figure 3'*. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-113 at 18:00
UTC. The colorbar shows the index of probability.



Figure 3*+. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-113 at 18:00 UTC. The colorbar shows the index of probability.



Figure 3*1. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-113
at 18:00 UTC.



Figure 3*2. Result of the Probabilistic Neural Network (PNN) for the event of 2003-113 at 18:00 UTC. The colorbar
shows the index of probability.



Figure 3*3. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-113 at
18:00 UTC. The colorbar shows the index of probability.



Figure 3*4. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-113 at 18:00 UTC.



Figure 3*#. True color image for the event of 2006-067 at 18:35 UTC.



Figure 3*%. False color image for the event of 2006-067 at 18:35 UTC.



Figure 3*&. Result of the probabilistic display model (PD) for the event of 2006-067 at 18:35 UTC. The colorbar shows
the index of probability.



Figure 3*'. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2006-067 at 18:35
UTC. The colorbar shows the index of probability.



Figure 3**. Result of the Maximum Likelihood model (MLE) for the event of 2006-067 at 18:35 UTC. The colorbar
shows the index of probability.



Figure 4++. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2006-067 at
18:35 UTC. The colorbar shows the index of probability.



Figure 4+1. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2006-067 at 18:35 UTC.



Figure 4+2. Result of the Maximum a posteriori model (MAP) for the event of 2006-067 at 18:35 UTC. The colorbar
shows the index of probability.



Figure 4+3. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2006-067 at
18:35 UTC. The colorbar shows the index of probability.



Figure 4+4. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2006-067 at 18:35 UTC.



Figure 4+#. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-067 at 18:35
UTC. The colorbar shows the index of probability.



Figure 4+%. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2006-067 at 18:35 UTC. The colorbar shows the index of probability.



Figure 4+&. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-067
at 18:35 UTC.



Figure 4+'. Result of the Probabilistic Neural Network (PNN) for the event of 2006-067 at 18:35 UTC. The colorbar
shows the index of probability.



Figure 4+*. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2006-067 at
18:35 UTC. The colorbar shows the index of probability.



Figure 41+. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2006-067 at 18:35 UTC.



Figure 411. True color image for the event of 2006-069 at 18:25 UTC.



Figure 412. False color image for the event of 2006-069 at 18:25 UTC.



Figure 413. Result of the probabilistic display model (PD) for the event of 2006-069 at 18:25 UTC. The colorbar shows
the index of probability.



Figure 414. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2006-069 at 18:25
UTC. The colorbar shows the index of probability.



Figure 41#. Result of the Maximum Likelihood model (MLE) for the event of 2006-069 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 41%. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2006-069 at
18:25 UTC. The colorbar shows the index of probability.



Figure 41&. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2006-069 at 18:25 UTC.



Figure 41'. Result of the Maximum a posteriori model (MAP) for the event of 2006-069 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 41*. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2006-069 at
18:25 UTC. The colorbar shows the index of probability.



Figure 42+. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2006-069 at 18:25 UTC.



Figure 421. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-069 at 18:25
UTC. The colorbar shows the index of probability.



Figure 422. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2006-069 at 18:25 UTC. The colorbar shows the index of probability.



Figure 423. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-069
at 18:25 UTC.



Figure 424. Result of the Probabilistic Neural Network (PNN) for the event of 2006-069 at 18:25 UTC. The colorbar
shows the index of probability.



Figure 42#. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2006-069 at
18:25 UTC. The colorbar shows the index of probability.



Figure 42%. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2006-069 at 18:25 UTC.



Figure 42&. True color image for the event of 2006-071 at 18:10 UTC.



Figure 42'. False color image for the event of 2006-071 at 18:10 UTC.



Figure 42*. Result of the probabilistic display model (PD) for the event of 2006-071 at 18:10 UTC. The colorbar shows
the index of probability.



Figure 43+. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2006-071 at 18:10
UTC. The colorbar shows the index of probability.



Figure 431. Result of the Maximum Likelihood model (MLE) for the event of 2006-071 at 18:10 UTC. The colorbar
shows the index of probability.



Figure 432. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2006-071 at
18:10 UTC. The colorbar shows the index of probability.



Figure 433. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2006-071 at 18:10 UTC.



Figure 434. Result of the Maximum a posteriori model (MAP) for the event of 2006-071 at 18:10 UTC. The colorbar
shows the index of probability.



Figure 43#. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2006-071 at
18:10 UTC. The colorbar shows the index of probability.



Figure 43%. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2006-071 at 18:10 UTC.



Figure 43&. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-071 at 18:10
UTC. The colorbar shows the index of probability.



Figure 43'. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2006-071 at 18:10 UTC. The colorbar shows the index of probability.



Figure 43*. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-071
at 18:10 UTC.



Figure 44+. Result of the Probabilistic Neural Network (PNN) for the event of 2006-071 at 18:10 UTC. The colorbar
shows the index of probability.



Figure 441. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2006-071 at
18:10 UTC. The colorbar shows the index of probability.



Figure 442. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2006-071 at 18:10 UTC.



Figure 443. True color image for the event of 2006-071 at 18:15 UTC.



Figure 444. False color image for the event of 2006-071 at 18:15 UTC.



Figure 44#. Result of the probabilistic display model (PD) for the event of 2006-071 at 18:15 UTC. The colorbar shows
the index of probability.



Figure 44%. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2006-071 at 18:15
UTC. The colorbar shows the index of probability.



Figure 44&. Result of the Maximum Likelihood model (MLE) for the event of 2006-071 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 44'. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2006-071 at
18:15 UTC. The colorbar shows the index of probability.



Figure 44*. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2006-071 at 18:15 UTC.



Figure 4#+. Result of the Maximum a posteriori model (MAP) for the event of 2006-071 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 4#1. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2006-071 at
18:15 UTC. The colorbar shows the index of probability.



Figure 4#2. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2006-071 at 18:15 UTC.



Figure 4#3. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-071 at 18:15
UTC. The colorbar shows the index of probability.



Figure 4#4. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2006-071 at 18:15 UTC. The colorbar shows the index of probability.



Figure 4##. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2006-071
at 18:15 UTC.



Figure 4#%. Result of the Probabilistic Neural Network (PNN) for the event of 2006-071 at 18:15 UTC. The colorbar
shows the index of probability.



Figure 4#&. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2006-071 at
18:15 UTC. The colorbar shows the index of probability.



Figure 4#'. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2006-071 at 18:15 UTC.



Figure 4#*. True color image for the event of 2000-131 at 18:50 UTC.



Figure 4%+. False color image for the event of 2000-131 at 18:50 UTC.



Figure 4%1. Result of the probabilistic display model (PD) for the event of 2000-131 at 18:50 UTC. The colorbar shows
the index of probability.



Figure 4%2. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2000-131 at 18:50
UTC. The colorbar shows the index of probability.



Figure 4%3. Result of the Maximum Likelihood model (MLE) for the event of 2000-131 at 18:50 UTC. The colorbar
shows the index of probability.



Figure 4%4. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2000-131 at
18:50 UTC. The colorbar shows the index of probability.



Figure 4%#. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2000-131 at 18:50 UTC.



Figure 4%%. Result of the Maximum a posteriori model (MAP) for the event of 2000-131 at 18:50 UTC. The colorbar
shows the index of probability.



Figure 4%&. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2000-131 at
18:50 UTC. The colorbar shows the index of probability.



Figure 4%'. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2000-131 at 18:50 UTC.



Figure 4%*. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2000-131 at 18:50
UTC. The colorbar shows the index of probability.



Figure 4&+. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2000-131 at 18:50 UTC. The colorbar shows the index of probability.



Figure 4&1. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2000-131
at 18:50 UTC.



Figure 4&2. Result of the Probabilistic Neural Network (PNN) for the event of 2000-131 at 18:50 UTC. The colorbar
shows the index of probability.



Figure 4&3. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2000-131 at
18:50 UTC. The colorbar shows the index of probability.



Figure 4&4. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2000-131 at 18:50 UTC.



Figure 4&#. True color image for the event of 2003-204 at 17:40 UTC.



Figure 4&%. False color image for the event of 2003-204 at 17:40 UTC.



Figure 4&&. Result of the probabilistic display model (PD) for the event of 2003-204 at 17:40 UTC. The colorbar shows
the index of probability.



Figure 4&'. Downsampled and �ltered result of the probabilistic display model (PD) for the event of 2003-204 at 17:40
UTC. The colorbar shows the index of probability.



Figure 4&*. Result of the Maximum Likelihood model (MLE) for the event of 2003-204 at 17:40 UTC. The colorbar
shows the index of probability.



Figure 4'+. Downsampled and �ltered result of the Maximum Likelihood model (MLE) for the event of 2003-204 at
17:40 UTC. The colorbar shows the index of probability.



Figure 4'1. Segmentation result of the Maximum Likelihood model (MLE) for the event of 2003-204 at 17:40 UTC.



Figure 4'2. Result of the Maximum a posteriori model (MAP) for the event of 2003-204 at 17:40 UTC. The colorbar
shows the index of probability.



Figure 4'3. Downsampled and �ltered result of the Maximum a posteriori model (MAP) for the event of 2003-204 at
17:40 UTC. The colorbar shows the index of probability.



Figure 4'4. Segmentation result of the Maximum a posteriori model (MAP) for the event of 2003-204 at 17:40 UTC.



Figure 4'#. Result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-204 at 17:40
UTC. The colorbar shows the index of probability.



Figure 4'%. Downsampled and �ltered result of the Feedforward Backpropagation Neural Network (FFNN) for the event
of 2003-204 at 17:40 UTC. The colorbar shows the index of probability.



Figure 4'&. Segmentation result of the Feedforward Backpropagation Neural Network (FFNN) for the event of 2003-204
at 17:40 UTC.



Figure 4''. Result of the Probabilistic Neural Network (PNN) for the event of 2003-204 at 17:40 UTC. The colorbar
shows the index of probability.



Figure 4'*. Downsampled and �ltered result of the Probabilistic Neural Network (PNN) for the event of 2003-204 at
17:40 UTC. The colorbar shows the index of probability.



Figure 4*+. Segmentation result of the Probabilistic Neural Network (PNN) for the event of 2003-204 at 17:40 UTC.



Table 1. List of events collected for Dust Storms (/0), blowing dust ((1/)), smoke (02) and also events with none
of this events (background denoted as -'). The events listed with (�) are used for testing the algorithms, while the
remaining events are used to construct and train the models. The events referenced with Q,V are events that (to the
best of the knowledge of the author P.R.P.) do not contain dust, therefore, are not reported in previous research work or
reports. The latter events were chosen arbitrarily.

+ear Month Day Classi�cation Obs. Time (MST) Scan Time (UCT) Reference
2000 05 10 SM 11:50 18:50 Q18VQ16V
2001 04 06 $S 10:56 18:30 Q18V
2001 04 10 $S 10:53 18:05 Q18V
2001 06 04 B'$U� 0:53 18:10 Q18V
2001 06 13 B'$U 9:53 18:05 Q18V
2001 11 23 B'$U 7:53 18:30 Q18V
2002 02 09 B'$U� 9:53 18:40 Q18V
2002 03 01 B'$U 10:53 18:15 Q18VQ10V
2002 03 08 B'$U 10:53 18:20 Q18VQ10V
2002 03 14 B'$U 2:53 17:45 Q18V
2002 04 30 B'$U 6:53 18:40 Q18V
2002 07 02 $S 17:14 17:55 Q18V
2002 12 17 $S 10:52 18:45 Q18V
2003 03 04 B'$U� 13:52 18:15 Q18VQ10V
2003 03 18 B'$U 11:52 18:25 Q18V
2003 03 27 B'$U 12:53 18:20 Q18VQ10V
2003 04 15 $S 9:53 17:10 Q18VQ10VQ6VQ16V
2003 04 17 C0� 11:40 18:40 Q#V
2003 04 23 B'$U 1:53 18:00 Q18V
2003 07 23 SM 10:40 17:40 Q18VQ6V
2003 11 22 $S 10:53 18:20 Q18VQ10V
2003 12 15 $S 5:17 18:25 Q18VQ10VQ6V
2004 02 19 $S 7:10 18:15 Q18V
2005 04 09 C0� 10:30 17:30 Q#V
2005 11 27 $S 0:51 18:20 Q18V
2006 03 08 B'$U 10:51 18:35 Q18V
2006 03 10 B'$U 9:51 18:25 Q18V
2006 03 12 B'$U 7:51 18:10 Q18VQ10V
2006 04 13 C0� 11:10 18:10 Q#V
2009 04 04 $S� 11:15 18:15 Q18V
2009 04 07 C0� 11:00 18:00 Q#V



Table 2. Collection of granules associated to the list of events described in the previous table to MODIS level 1B �les.

+ear Month Day Classi�cation Granule Filename
2000 05 10 SM MOD021%M.A2000131.1850.005.2007171190825.hdf
2001 04 06 $S MOD021%M.A2001096.1830.005.2008272181137.hdf
2001 04 10 $S MOD021%M.A2001100.1805.005.2007006002547.hdf
2001 06 04 B'$U� MOD021%M.A2001155.1810.005.2007024065302.hdf
2001 06 13 B'$U MOD021%M.A2001164.1805.005.2007027061532.hdf
2001 11 23 B'$U MOD021%M.A2001327.1830.005.2007067003910.hdf
2002 02 09 B'$U� MOD021%M.A2002040.1840.005.2008290033714.hdf
2002 03 01 B'$U MOD021%M.A2002060.1815.005.2008224212729.hdf
2002 03 08 B'$U MOD021%M.A2002067.1820.005.2008225145618.hdf
2002 03 14 B'$U MOD021%M.A2002073.1745.005.2008226175249.hdf
2002 04 30 B'$U MOD021%M.A2002120.1840.005.2007128042124.hdf
2002 07 02 $S MOD021%M.A2002183.1755.005.2008238052433.hdf
2002 12 17 $S MOD021%M.A2002351.1845.005.2007244072834.hdf
2003 03 04 B'$U� MOD021%M.A2003063.1815.005.2007279011314.hdf
2003 03 18 B'$U MOD021%M.A2003077.1825.005.2008297001154.hdf

MOD021%M.A2003078.1730.005.2008297223949.hdf
2003 03 27 B'$U MOD021%M.A2003086.1820.005.2008298223751.hdf
2003 04 15 $S MOD021%M.A2003105.1710.005.2008306182153.hdf

MOD021%M.A2003105.1715.005.2008306183334.hdf
MOD021%M.A2003105.1850.005.2008306182854.hdf

2003 04 17 C0� MOD021%M.A2003107.1840.005.2008306215653.hdf
2003 04 23 B'$U MOD021%M.A2003113.1800.005.2008260222048.hdf
2003 07 23 SM MOD021%M.A2003204.1740.005.2008311055159.hdf
2003 11 22 $S MOD021%M.A2003326.1820.005.2008018094422.hdf
2003 12 15 $S MOD021%M.A2003349.1825.005.2008262193442.hdf
2004 02 19 $S MOD021%M.A2004050.1815.005.2007241204939.hdf
2005 04 09 C0� MOD021%M.A2005099.1730.005.2008001182727.hdf
2005 11 27 $S MOD021%M.A2005331.1820.005.2008260015545.hdf
2006 03 08 B'$U MOD021%M.A2006067.1835.005.2008075230009.hdf
2006 03 10 B'$U MOD021%M.A2006069.1825.005.2008076134942.hdf
2006 03 12 B'$U MOD021%M.A2006071.1810.005.2008077104411.hdf

MOD021%M.A2006071.1815.005.2008077104359.hdf
2006 04 13 C0� MOD021%M.A2006103.1810.005.2008088093854.hdf
2009 04 04 $S) MOD021%M.A2009093.1825.005.2009094023122.hdf
2009 04 07 C0� MOD021%M.A2009097.1800.005.2009098020431.hdf

Table 3. Error measurements for the original cell image vs cell degraded

Performance: NMSE SNR PSNR WPSNR
Non-restored synthetic 4!37 31!29 24!35 30!50
Restored synthetic 0!91 46!70 35!89 44!64

Non-restored real data 10!96 22!10 23!37 29!86
Restored real data 0!93 46!69 34!59 41!41



Table 4. General details of the training methodology for each classi�cation method.

PD MLE MAP FFNN PNN

Features B32! 31 F (1) � � �F (4) F (1) � � �F (4) 2F (1) � � � 2F (8) 2bF
(1)

� � � 2bF
(4)

Samples All All All i = m' 4 i = m' 4
Preprocessing No No No No bF (") = * (()!4

* (()

5
* (()

Architecture NA NA NA
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Classify $isual
C0; SM;
B'$U;$S

C0; SM;
B'$U;$S

C0; SM;
B'$U;$S

C0; SM;
B'$U;$S

Table #. General details of the testing methodology for each classi�cation method.

PD MLE MAP FFNN PNN

Features B32! 31 F (1) � � �F (4) F (1) � � �F (4) F (1) � � �F (8) bF (1) � � � bF (4)
Samples All All All All All

Preprocessing No No No No bF (") = * (()!4
* (()

5
* (()

Classify (1) $isual
C0; SM;
B'$U;$S

C0; SM;
B'$U;$S

C0; SM;
B'$U;$S

C0; SM;
B'$U;$S

Classify (2) $isual C0; $S C0; $S C0; $S C0; $S

Table %. Results obtained for the di¤erent models for dust storms during full testing. Results are totalized by event,
then they were averaged and displayed here.

MLE MAP FFNN PNN
fp rate 0!4688 0!4160 0!4075 0!1816�

tp rate 0!3138 0!3507 0!4554 0!6838�

precision 0!3138 0!3507 0!4554 0!6838�

accuracy 0!4464 0!4951 0!5426 0!7706�

recall 0!3138 0!3507 0!4554 0!6838�

F!measure 0!3138 0!3507 0!4554 0!6838�

sensitivity 0!3138 0!3507 0!4554 0!6838�

speci�city 0!5312 0!5840 0!5925 0!8184�

AUROC 0!4893 0!4945 0!7402� 0!6477



Table &. Results obtained for the di¤erent models on only two classes: dust and background. Results are totalized by
event, then they were averaged and displayed here.

MLE MAP FFNN PNN
fp rate 0!2446 0!2202 0!0864� 0!1215
tp rate 0!5255 0!5562 0!8080� 0!7664
precision 0!5255 0!5562 0!8080� 0!7664
accuracy 0!6779 0!7061 0!8816� 0!8412
recall 0!5255 0!5562 0!8080� 0!7664

F!measure 0!5255 0!5562 0!8080� 0!7664
sensitivity 0!5255 0!5562 0!8080� 0!7664
speci�city 0!7554 0!7798 0!9136� 0!8785
AUROC 0!4884 0!4925 0!7117� 0!6293

Table '. Averaged area under ROC curve (AUC). Feature vectors vs. Classi�cation methods.

MLE MAP FFNN PNN

F (1) 0!4678 0!4926 0!9332� 0!5166

F (2) 0!5113� 0!5027 0!4891 0!5000

F (3) 0!4934 0!4978 0!8224 0!8253�

F (4) 0!4849 0!4849 0!8145� 0!7526

F (5) 0!5001 0!5071 0!7041� 0!5047

F (6) 0!4921 0!4991 0!5664 0!5978�

F (7) 0!4915 0!4913 0!8822� 0!8259

F (8) 0!4848 0!4904 0!7096� 0!6583

Table *. Averaged area under ROC curve (AUC) for two 2 classes. Feature vectors vs. Classi�cation methods.

MLE MAP FFNN PNN

F (1) 0!4683 0!4873 0!8838� 0!5166

F (2) 0!5086� 0!5024 0!4953 0!5000

F (3) 0!4953 0!4989 0!8400� 0!7907

F (4) 0!4816 0!4816 0!7364� 0!6966

F (5) 0!4936 0!5000 0!6990� 0!5067

F (6) 0!4827 0!4912 0!5060 0!5972�

F (7) 0!4936 0!4937 0!8645� 0!7907

F (8) 0!4851 0!4880 0!6685� 0!6358



Table 1+. Average processing time (in seconds) per each event: Classi�cation method vs. Feature vector.

MLE MAP FFNN PNN

F (1) 53!01 101!10 135!60 1744!49

F (2) 49!01 92!37 136!03 2222!61

F (3) 52!03 96!97 130!83 1277!77

F (4) 38!83� 74!18� 129!80 1272!33

F (5) 46!55 89!75 126!35 657!62�

F (6) 47!68 91!09 128!76 831!31

F (7) 47!61 92!45 129!85 809!18

F (8) 46!83 90!54 126!17� 844!48

Table 11. Average processing time per pixel (in mili-seconds): Classi�cation method vs. Feature vector.

MLE MAP FFNN PNN

F (1) 0!0193 0!0368 0!0493 0!6347

F (2) 0!0178 0!0336 0!0495 0!8086

F (3) 0!0189 0!0353 0!0476 0!4649

F (4) 0!0141� 0!0270� 0!0472 0!4629

F (5) 0!0169 0!0327 0!0460 0!2393�

F (6) 0!0173 0!0331 0!0468 0!3024

F (7) 0!0173 0!0336 0!0472 0!2944

F (8) 0!0170 0!0329 0!0459� 0!3072

Table 12. Average processing time (in seconds) per multispectral scan: Classi�cation method vs. Feature vector.

MLE MAP FFNN PNN

F (1) 0!0261 0!0498 0!0668 0!8594

F (2) 0!0241 0!0455 0!0670 1!0949

F (3) 0!0256 0!0478 0!0644 0!6294

F (4) 0!0191� 0!0365� 0!0639 0!6268

F (5) 0!0229 0!0442 0!0622� 0!3239�

F (6) 0!0235 0!0449 0!0634 0!4095

F (7) 0!0235 0!0455 0!0640 0!3986

F (8) 0!0231 0!0446 0!0622� 0!4160



APPENDI$ B. TRUE COLOR EVENT IMAGES WITH ANNOTATIONS
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Figure #11. a2002183Y1755.png



Figure #12. a2002351Y1845.png
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