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1. Introduction 

1.1 Importance of precipitation estimation 

Advancement in measurement/estimation of the amount, temporal and spatial 

distribution of precipitation is one of the most challenging research problems in 

earth science due to its wide range of applications in different scales from global-

climate down to local-weather. Precipitation is one of the most critical 

components of the Earth's hydrological cycle and it is essential to provide the 

fresh water that sustains life. On the other side, floods are among the most 

frequent and costly natural disasters in terms of human hardship and economic 

loss. Flooding results in damage to property, crops and negative impacts on 

human welfare. Since 1997, annually more than 5000 lives are lost, at least 

15,000,000 people are displaced and more than $10 billion damage is reported 

worldwide due to occurrence of flood after a heavy rainfall (Brakenridge et al., , 

1997-2006 data).  According to the report by NWS, flooding is the 1st ranked 

source of damage in the US comparing to the other weather related events with 

an average of $4.6 billion a year over 20 years of 1984-2003. 

(http://www.weather.gov/floodsafety/floodsafe.shtml). 

 

1.2 Methods of precipitation measurement/estimation 
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Different instruments are used to measure/estimate rainfall amount and intensity. 

Rain gauges have been a primary source of precipitation measurement for a long 

time. Although rain gauges directly measure the amount of rainfall, they have 

significant shortcomings for flash-flood forecasting purposes (Smith et al., 1996). 

Gauge networks are inadequate in many parts of the world and can not cover all 

area of interest to make a real time observation. Meanwhile, it is impractical and 

not cost-effective to have a dense network of gauges that can measure the highly 

variable spatial distribution of rainfall in a large domain of area.  

 

Ground-based radars provide additional support for regional precipitation 

monitoring with high spatial and temporal resolution. Radars observe the back-

scatter of electromagnetic radiation from liquid water drops. However, they cover 

only a limited area and because of this, numbers of radar are required to cover a 

wide area of interest. Such a system is not necessarily cost- effective. Furthermore, 

it is not feasible to site ground based radars to measure rainfall over oceans and 

also they are not efficient over mountainous regions due to wave blockage by 

mountains. Other issues include attenuation, beam-filling, and beam overshoot (i.e., 

Sauvageot, 1994). 

 

Instead, the space-based technology for large-scale measurement of rainfall is a 

promising tool. Satellites can provide near-real time observation of precipitation 
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at fairly high resolution. The history of rainfall estimation from space dates back 

to the 1970s (Hossain, 2006). Since then a variety of sensors have been 

developed and launched to observe the atmosphere. These sensors fall into two 

main categories: a) visible(VIS) and Infrared (IR) sensors available from 

Geostationary Earth Orbit (GEO) and Low-Earth Orbiting (LEO) satellites and 

b) Passive microwave (PMW) and active radar sensors currently only available 

onboard LEO satellites. VIS/IR imagers from GEO satellites can provide high 

resolution images both in time (one hour or less) and space (0.05o or less), 

However they only give cloud-top information and can not be used for direct 

measurement of rainfall. As a result many GEO-based  algorithms, for 

precipitation estimation, rely on the effect of scale averaging for accuracy 

improvement(i.e., Arkin and Meisner, 1987).  

 

In contrast to the VIS/IR techniques, more direct estimation of precipitation is 

obtained via techniques utilizing passive microwave (PMW) data. PMW data 

have strong physical interaction with hydrometeors in the entire atmosphere and 

therefore, provide more accurate instantaneous estimate of precipitation. 

However, their poor temporal and spatial resolution imposes serious limitations. 

In addition, the heterogonous and in general unknown emissivity of land 

surfaces(Ferraro et al., 1994) limits their reliability over the land surface. 
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2. Research Motivation 

Due to capability of PMW sensors to provide more accurate estimate of 

precipitation number of PMW sensors has been increased since last ten years. 

However, even with the future Global Precipitation Measurement (GPM) 

Mission the temporal and spatial resolution of precipitation estimation is still not 

enough for many applications. For extreme hydrologic events such as flash 

floods, precipitation observation at high sampling frequency and spatial 

resolution during the storm evolution stage is critical as the life of a convective 

storm from growing to dissipation can occur in a matter of 1 hour or less.  

Given the ability of GEO satellite to provide frequent VIS/IR imagery, Attempt 

to improve accuracy, coverage and resolution of precipitation estimate via 

integration of information from GEO (VIS/IR) and LEO (PMW) has been an 

active area of research since almost last three decades (Adler et al., 1993: 

Huffman et al., 2001: Huffman et al., 2007: Joyce et al., 2004: Kidd et al., 2003: 

Kummerow and Giglio, 1995: Levizzani et al., 1996: Miller et al., 2001: 

Sorooshian et al., 2000: Todd et al., 2001: Turk et al., 2000: Turk et al., 2003: Xu 

et al., 1999). Joyce et al.(2004) proposed The Climate Prediction Center 

morphing (CMORPH) method that exclusively estimates precipitation from 

PMW observations. They used spatial lag correlations on successive GEO-IR 

images to propagate PMW-derived precipitation estimate in space and time via 

“morphing” for times when updated PMW data are not available. However, one 
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important shortcoming of CMORPH, as mentioned by the authors, is that 

formation and dissipation of precipitation between PMW overpasses can not be 

detected. Another approach is using precipitation estimates from PMW to 

calibrate the GEO-derived algorithms. Kidd et al. (2003) argued that because of 

sample size requirements, combined/blended algorithms, in which PMW data is 

used to calibrate IR-based rainfall relationships, pose a tradeoff problem between 

the temporal and spatial details. As they indicated, when longer time scales are 

used for calibration, the spatial details can be retained at the expense of short-

term variation in the IR-rainfall relationship. On the other hand, when 

calibration is performed using coincident PMW-IR images, the short term 

variability of IR Rainfall relationships are captured at the expense of information 

regarding their spatial variability. Another combination strategy, which focuses 

on obtaining the “best” local estimate at the times of PMW observations, as 

opposed to finer temporal resolution time series (Hufman, et. al., 2007), relies on 

using available PMW estimates from various satellites and then filling the gaps 

(spatially) with calibrated IR estimates. Due to the recognized importance of 

employing GEO-based VIS/IR information for precipitation estimation, 

whether in stand-alone mode or in combination, Behrangi et al. (2008a,b) 

incorporated other spectral bands (in addition to IR alone) into a rain detection 

and rainfall estimation algorithms  using the self organizing Feature Map (SOFM) 

classification technique (Kohonen, 1982). They reported that multi-spectral data, 
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available from GEO satellite, can yield additional information relevant to 

precipitation. Therefore, using additional bands was recognized as an alternative 

to improve GEO-based estimation algorithms, which to some extent provide 

better foundation for combining PMW-VIS/IR rain-estimates. As a part of the 

GSSP program and in continuation of the author’s previous work, we decided to 

analyze the clustering technique by visualizing the SOFM clusters in a selected 

precipitation event using data obtained from our previous multi-spectral 

experiments. This would help us to understand how effective SOFM clusters can 

represent precipitation field and observed input features. The clustering 

approach was also used to study diurnal cycle of precipitation over Florida. A 

brief review of the clustering technique for precipitation retrievals is provided in 

section 3. In section 4 clustering approach is analyzed using a precipitation event 

and result of the diurnal cycle experiment is reported in section 5. Finally, 

Section 6 reflects our ongoing efforts towards combining VIS/IR and PMW 

information for precipitation estimation. 

 

3. Multi-spectral precipitation retrieval algorithm  

Multi-spectral rain detection and estimation algorithms (Behrangi et al., 2008) use 

the SOFM technique for classification of input features. Since in the present 

study we aimed to analyze this clustering approach, a brief overview of SOFM is 

provided below. 
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3.1. Self-organizing Feature Map (SOFM) 

Breaking up the input space into a number of classes is a typical statistical pattern 

recognition problem, which can be accomplished using a number of methods. A 

neural network based classification algorithm, the (SOFM, Kohonen, 1982) can 

be used to classify n-dimensional input (hereafter referred as feature) space into a 

number of groups (hereafter referred as clusters). SOFM permits the 

classification without dependency to precipitation field (see Hsu et al. 1999). 

SOFM can divide a multi-dimensional feature space into a predetermined 

number of clusters according to local clustering. These clusters are arranged into 

two dimensional discrete map which preserves topological order. 

 

The process of training the SOFM consists of presenting input vectors one by 

one from the training dataset to the network. The input vector must be 

normalized in each feature dimension so that they are comparable. The distance 

(d) between each normalized input vector (xi, i=1,…n0) and the SOFM cluster 

centers calculated as 
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where n1 is predefined total number of clusters and wij is the connection 

parameter (weight) of SOFM from input feature i to the specified cluster j.  

 

The best matching SOFM cluster, c (winning node), is defined from the 

minimum distance between the input feature vector and the SOFM connection 

weights wij as follow 

 

1,...,1,)min( njdd jc ==                                                            (2) 

 

Through a recursive process of competitive cluster selection and weight 

adjustment, location of the cluster centers becomes stable. After training, the 

trained SOFM has the ability to assign any arbitrary feature vector xi to a SOFM 

cluster (with fixed weights) according to their minimum distance.  

 

3.2. Precipitation detection 

The SOFM-based precipitation detection algorithm (Behrangi, 2008) is capable 

of applying multi-spectral data (or textural information) to distinguish rain and 

no rain areas by implementing a sequence of three main steps: (1) unsupervised 

classification of input features from satellite imagery to a number of 

predetermined clusters; (2) supervised computation of the probability of 
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precipitation (POP) for each classified cluster, and (3) separation of rain and no-

rain clusters using the pattern matching technique.  

POP for each cluster (k) is calculated using available rain-rate as:  

 

POP k =R k / (R k +D k) *100,  where k=1...n1 

 

Where, R k and D k are the total number of precipitation and no-precipitation 

counts of each cluster respectively.  

Input features can include multi-spectral data and textural features (i.e., STD and 

mean) extracted from neighborhood pixels for each spectrum. The pattern-

matching technique introduced by Lovejoy and Austin (1979) can be used to 

define the optimum POP threshold. This method was also used by Cheng et al 

(1993). Through this technique the SOFM clusters, are sorted in order of 

decreasing POP. Starting from a cluster with the highest POP, total number of 

precipitation counts (obtained from all clusters) is distributed to each cluster 

equal to its total count (obtained from both precipitation and no-precipitation 

counts). The distribution is continued until the sum of the clusters count 

(precipitation counts) becomes closest to the total precipitation counts. The POP 

of the cluster at which this occurs, is defined as the optimum POP threshold. 

Therefore, Clusters having POP greater than optimum POP threshold are 
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defined as rain clusters and clusters having POP less than optimum POP 

threshold are defined as no-rain clusters.  

 

3.3. Estimation of precipitation rate using multi-dimensional inputs 

This algorithm is also based on the SOFM classification. The algorithm consists 

of six separate stages: (1) extraction of input features from multi-spectral data, (2) 

unsupervised classification of the input features to a number of predetermined 

clusters, (3) supervised computation of mean precipitation rate (MPR) for each 

classified cluster, (4) ranking and sorting the clusters based on their MRR, (5) 

redistribution of sorted precipitation rates to the ranked clusters such that the 

cluster with the highest MRR will contain the highest precipitation rates, and (6) 

averaging the sorted precipitation rates in each cluster (MRR2), resulting in a rain 

rate estimator. 

 

4. Analyzing the clustering approach in a precipitation event  

Figure 1 visually demonstrates SEVIRI images of brightness temperature (IR10.8 

µm) and albedo (from VIS 0.6µm) from a precipitation event at 1157 UTC 9 

January 2005. The Rain rate estimates from PMW, single IR, and bi-spectral 

scenarios are also shown in figures 2a-c respectively. Since detailed comparison 

of the selected scenarios may not be an easy task, ellipses and squares are shown 

in the images to represent areas with major false detection and major misses. In 
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other words, ellipses and squares show cases of non-raining cold-thin clouds and 

raining warm-cloud respectively, which are both problematic for single IR 

algorithms. Thus, using both brightness temperature and albedo images 

precipitation retrieval is improved. 

 For the present experiment, rain estimate from PMW is assumed to be “truth” 

and was used as reference. The bi-spectral scenario incorporates visible (0.6um) 

and IR (10.8 um) bands and Figure 3 demonstrates its corresponding SOFM 

clusters, arranged in a 2-D network with a size of 20x20. Comparison using maps 

of the albedo (Fig. 3a), brightness temperature (Fig 3b), MRR (Fig 3c), and 

MRR2 (Fig 3d), agrees with our expectation in such the brighter and the colder 

cloud is associated with higher rain rate (see zone B) and no precipitation is 

expected for hot and low-reflective regions (see zone D). 

 In order to track clusters in the precipitation field a 2D-colorbar was generated 

and a map of corresponding clusters, colored with the 2D-colorbar was plotted 

(the 2D-colorbar is  shown in the bottom-right of the figures 1c and 1d). In 

Figures 1c, d the black line delineates raining areas, detected by PMW sensor and 

the SOFM-based rain estimator, using IR +VIS) respectively. Comparison 

between Figures 1, 2 and 3 reveals how clusters can classify satellite images to 

different groups, providing basis for rain detection and estimation. Similarity of 

neighborhood clusters is also inferred from Figures 1 and 3, which results in 

having a fairly smoothed field of estimated rainfall (Figure 2c and 2d). Indeed, by 
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implementing this approach to different events, it is possible to see how 

different-cloud-types are classified by the clusters, providing a valuable tool to 

evaluate the performance of the described estimation algorithm.  

 

5. Diurnal cycle study using clustering approach 

Using the described clustering approach, diurnal cycle of precipitation was also 

studied. As found previously, water vapor band in conjunction with IR band can 

improve IR-only methods and visible band adds significant information to a 

single IR band during. Figure 4 shows diurnal cycle of precipitation obtained 

using GOES data (spatial and temporal resolution: 0.04o lat-long grid-boxes and 

half hourly respectively) during June-Aug 2005. This study was conducted over 

Florida peninsula and hourly NEXRAD (0.04o lat-long grid-boxes) rain estimate 

were used as ground truth for reference. 

As seen in figure 4, improvement in representing the diurnal cycle is achieved by 

addition of water vapor (WV, 6.7µm) and albedo channels to the single IR band 

during daytime and nighttime. As shown in Figure 4, by using additional 

channels, in general, improvement is more obvious for rain detection than rain 

estimation. 

 

6. Integration of information from VIS/IR and PMW sensors  
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As described in section 2, precipitation-related PMW data have strong physical 

relationship to the hydrometeors and result in more accurate precipitation 

estimation. However, even taken together, average coverage in the current 3-

hourly PMW estimates is about 80% of the earth’s surface in the latitude band 

50oN-S (Huffman et al. 2007). This will not fulfill many scientific communities’ 

request (e.g., hydrology) due to the infrequent global precipitation estimate. 

Some of the previous attempts to ameliorate the problem using combined PMW-

VIS/IR imagers were reviewed in section 2. As another alternative solution, 

which is currently under study, is using a high resolution cloud tracking 

technique (Bellerby, 2004) to capture the advection of grid points in two 

subsequent GEO-based images to define motion streamlines for each pixel. At 

each grid point along a streamline, an empirical cloud-motion and rainfall 

estimation model is assigned to incorporate convection, advection, and 

orographic enhancement into the precipitation estimation. The parameters of the 

above-described model are sequentially adjusted by Kalman filtering when PMW 

rainfall is available.  <need a reference?> 

Another approach, discussed during GSSP, lead to the idea of using the above 

mentioned tracking algorithm to interpolate PMW rain-estimates in time and 

employing that in conjunction with VIS/IR rain-estimates. As shown in figure 5, 

within a fixed grid-box, significant drop in correlation between consecutive half-

hourly PMW rain-estimates exists. This implies that any attempt to use PMW 
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estimate after half-hour is associated with significant error, unless we track the 

precipitation field. The experiment was conducted within a box (longitude: 

30oW-0o, latitude: 15oS-15oN) under SEVIRI’s coverage. For this study, 

intercalibrated PMW-derived rain rate estimates at 1/8o lat-long resolution 

(provided by NOAA CPC (Joyce et al., 2004) were used during the first 9 days of 

June 2005.  

 

7. Summary  

Analyzing the clustering approach described above, both event-based cluster-

visualization and diurnal cycle studies show that the clustering approach is a 

reasonable and effective way for multi-spectral precipitation retrievals. It was also 

found that implementing a proper tracking algorithm is important for 

interpolating PMW rain-estimate in time. Different approaches were discussed 

for combining PMW-VIS/IR, which initiated a follow up research. 
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Figure 1. Analyzing the clustering approach during a precipitation event on January 9, 
2005 at 1157 UTC:  a) map of brightness temperature (10.8 μm), b) map of  normalized 
albedo. In the background of figures c and d, each grid-box of the satellite image is 
replaced by the corresponding cluster with colors shown in the right-bottom corner of 
the figures. Raining areas are delineated in c and d using PMW and VIS/IR estimates.            
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a) PMW estimate   b) IR (10.8µm) -only    c) IR (10.8µm) + VIS (0.6 µm)  a) PMW estimate   b) IR (10.8µm) -only    c) IR (10.8µm) + VIS (0.6 µm)  a) PMW estimate   b) IR (10.8µm) -only    c) IR (10.8µm) + VIS (0.6 µm)  

 
 
Figure 2. Comparison of rain-rate estimates. a) PMW-derived rain rate. Figures b and c 
represent rain rate derived from b) single IR and c) VIS/IR imagery through the clustering 
approach. 
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Figure 3: Representation of corresponding SOFM clusters, arranged in a 2-D network with a 
size of 20x20: a) Albedo(%), b) BT(k), c) MRR (mm/hr), and d) MRR2 (mm/hr). Note that, 
the brighter and the colder cloud is associated with higher rain rate (see zone B) and no 
precipitation is expected for hot and low-reflective regions (see zone D). Also, a relatively 
warm and thick cloud (high albedo) can produce rainfall (see Zone A) while in almost no 
precipitation is obtained for cold and low-reflective cloud (i.e., Cirrus cloud. see zone C)           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A

A

C 

C 

C 

B 

B 

B A 

D D

D

A 

C

B

D 

c) MRR (mm/hr) d) MRR2 (mm/hr) 

a) Normalized albedo (%) b) Brightness temperature (k) 



 21

 
 

 
Figure 4. Statistical representation of Diurnal cycle of precipitation over Florida peninsula during 
June-August, 2006. Red, black and green lines respectively represent IR-only, IR+WV, and IR+VIS 
scenarios, used to estimate precipitation through using the clustering approach. Blue lines in the first 
and last images represents NEXRAD rain-rate estimate. 
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Figure 5. Decay in correlation between consecutive half-hourly PMW rain-estimates, once no 
tracking is involved. 
 


