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A global, satellite-based landslide algorithm has been developed using surface 
information and multi-satellite rainfall data. The technique integrates surface parameters 
such as slope, land cover, soils, and elevation with satellite precipitation data to obtain an 
estimate of areas susceptible to landslides in near-real time. This research compares the 
predictions from the global landslide algorithm run retrospectively for individual years 
with global landslide inventories to assess both the relative skill of the technique and the 
value of currently available landslide information on a global scale. 

Results indicate that the general pattern of landslide activity (number of total 
events, geographic distribution, etc.) can be reproduced, but finer-scale distributions and 
individual events are difficult to match between the forecast and the event inventory. 
Preliminary results indicate that three-fourths of the landslide events correspond to 
locations with high susceptibility values based on the satellite-based Landslide 
Susceptibility Index map.  Probability of Detection and False Alarm Rate statistics are 
presented for the global database, with results varying based on the size of area used for 
event validation. Results are also shown to be a function of population density with more 
densely populated areas having higher scores, as expected. 

This global algorithm represents the first phase in identifying landslide hazards at 
this scale. With adjustment, the algorithm shows great promise in approaching landslide 
hazard assessment globally and providing information for the research community to 
address landslide issues in a broader context. The evaluation also provides insight into the 
necessary considerations and potential adaptations to the algorithm for improved 
landslide hazard forecasting on a global scale and the need for international efforts for 
developing accurate landslide inventories.

Abstract
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Landslide hazards pose a significant threat to populations throughout the world 

due to their rapid onset, multiple triggers, and impact on many different land cover types. 

These events are also one of the most challenging hazards to evaluate based on their 

small spatial and temporal scales. Identification and mapping of these hazards varies by 

region and represents heterogeneous coverage in even the most well-observed areas. The 

processes governing landslide initiation can be viewed as a function of several 

components, namely a background forcing including regional climatology and surface 

characteristics (slope and elevation), and a triggering mechanism (Dai et al. 2002). Other 

contributing variables such as anthropogenic surface modification can also significantly 

influence landslide susceptibility. Rainfall, including antecedent conditions and 

distribution, is a key climatological feature that affects landslide susceptibility. Intense 

rainfall over short durations can then serve as a triggering mechanism to initiate an event 

(Sidle and Ochiai 2006). 

Studies generally characterize the potential for a rainfall-triggered landslide event 

according to a rainfall intensity-duration threshold from past landslide and rainfall events. 

These thresholds have been produced on the global (Caine 1980), regional (Larsen and 

Simon 1993; Chien-Yuan et al. 2005), and local (Wieczorek 1987; Calcaterra et al. 2000)

scales and rely on landslide mapping and rainfall gauge information (Figure 1). The 

development of a threshold relationship requires information on the intensity (mm/hour) 

and duration (hours) of the rainstorm event that corresponds to the location of the 

landslide and time the landslide(s) occurred. This information is often challenging if not 

impossible to retrieve due to the relatively sparse network of rain gauges in most parts of 

the world and the inability to determine exactly when landslides were initiated. 

Therefore, establishing a relationship between rainfall events and landslide hazards is 

limited by the spatial and temporal scale of the events and the availability of in situ 

rainfall data.

Past landslide hazard research has relied on spatially and temporally 

heterogeneous rainfall gauge data at small spatial scales. Similarly, the majority of 

landslide studies focus on smaller scale evaluation at the slope or watershed level. The 

I. Introduction/Background
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high resolution nature of these studies limits their applicability to larger areas. Remote 

sensing products both for rainfall and surface features can fill the void to offer continuous 

data up to the global scale. An algorithm developed by Hong et al. (2006; Hong et al. 

2007) utilizes global remote sensing data to develop a landslide susceptibility and 

forecasting algorithm which draws on surface parameters and a merged satellite rainfall 

product to identify potential landslide events on the global scale. This research compares 

the predictions from the global landslide algorithm run retrospectively for a 2003 global 

landslide inventory to assess both the relative skill of the technique and the value of 

currently available landslide information on a global scale. The goal of this work is to 

better understand the interaction between different surface parameters and rainfall 

triggers at large spatial scales.

This paper first provides a short discussion of the research issues associated with 

using satellite products for landslide hazard research, citing specific case studies. Section 

3 presents a more detailed explanation of the model being evaluated as well as the 

methodology used to evaluate the accuracy of the model outputs. Sections 4 and 5 outline 

the preliminary results of this evaluation study and provide a discussion of the 

uncertainties associated with the input parameters. Lastly, section 6 describes the 

conclusions of this work as well as provides insight into the next steps for this research.

For studies at the slope or watershed level, gauge or radar data remain the only 

reliable sources available. However, for large scale studies and for evaluating areas 

without an in situ network, satellite data can provide crucial information for general 

landslide hazard analysis and susceptibility mapping.

Rainfall gauges provide accurate measurements of precipitation in a small area, 

but they can be highly affected by wind and gauge placement, causing significant 

underestimations of rainfall. Radar measurements such as operational surface radar 

provide near-complete coverage over some developed countries at high spatial and 

temporal resolution, although results in mountainous areas (where landslides occur) are 

sometimes questionable due to beam shielding errors.  

II. Remotely Sensed Precipitation Data: Opportunities and Challenges



5

Rainfall estimates from remote sensors on orbiting satellites can provide frequent 

and consistent coverage over large areas. Low-orbiting satellites such as NASA’s 

Tropical Rainfall Measuring Mission (TRMM) image the rainfall structure using active 

and passive microwave sensors in the tropics and into mid-latitudes. Other passive 

microwave instruments on polar-orbiting satellites also provide precipitation information 

over land.  While TRMM and other individual orbiting platforms can provide relatively 

accurate instantaneous rainfall rates, the return period of individual satellites limits the 

ability to estimate storm intensity and duration on small temporal scales.

Infrared cloud-top brightness temperature sensing from geostationary infrared 

data provide the highest spatial and temporal coverage over the equatorial and mid-

latitudes at 4 km, 15 minute resolution, estimating rain-rates from cloud top temperature 

and other information. However, the generally poor correlation between the coldest cloud 

areas and rainfall intensity suggests that these rain rates may be difficult to use 

independently but can enhance other precipitation products. 

To improve upon single-instrument precipitation estimates, many studies have 

used more sophisticated methodologies or merged satellite information to produce 

enhanced products. The TRMM Multi-Satellite Precipitation Analysis (TMPA) (Huffman 

et al. 2007) integrates data from multiple microwave satellites to provide a 3-hourly 0.25º 

product. More than nine years of the TMPA product is now available for research with a 

real-time version available for use in hydrological applications. PERSIANN-CCS 

algorithm (Hong et al. 2004) is an example of a product that uses geosynchronous IR 

data, which provides quasi-global rainfall estimates at 4 km hourly resolution by 

incorporating information on cloud temperature, texture, and geometry. 

Table 1 summarizes the range of rainfall products and describes their coverage, 

resolution, and limitations. Figure 2 illustrates the resolution differences between point 

and gridded satellite coverage over the island of Puerto Rico. These satellite products are 

generally applied on longer spatial and temporal scales to get a sense of the climatology 

or anomalies of a region. However, for landslide research purposes it is critical to have a 

representation of the rainfall structure at high resolution. Two case studies provide insight 

into the ability of different rainfall products to resolve individual rainfall events that were 

instrumental in triggering landslides. 
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In 2004, the eye of Tropical Storm Jeanne traveled over Puerto Rico, leaving 

extensive flooding and landslides in its wake. A gauging station in the south eastern 

portion of the island, NEXRAD radar, and multiple satellite instruments were able to 

capture rainfall accumulation over this period. Figure 3 illustrates the 3-hourly 

cumulative rainfall signature of this event as recorded by many rainfall products. The 

majority of the estimates accurately track the rapid rainfall accumulation as the storm 

made landfall on September 16th.

In a second example, a major storm over Southern California’s La Conchita area 

caused a massive mudslide that killed 10 people and injured 14 on January 10th, 2005. 

Figure 4 plots the 3-hourly cumulative rainfall over this period. These examples are not 

meant to serve as an intercomparison among products but rather to illustrate the 

variability of rainfall products at high temporal and spatial scales. The statistics indicate 

that the remote sensing products correlate well with each other but have a relatively poor 

correlation to gauge measurements. The RMSE and Bias also supports this finding. This 

is likely due to the resolution differences between point and gridded data as well as the 

natural variability existing in rainfall structure over different areas.

Another common issue that limits the accuracy and availability of the majority of 

rainfall products is orography, which has sizeable consequences for landslide hazard 

assessment. Precipitation generally increases with elevation as moist air is forced 

upwards, causing significant rainfall on the windward side of a mountain. For in situ and 

remote sensing instruments mountains can bias the areas in which gauges are installed, 

cause large signal interference of radar beams, and produce different atmospheric patterns 

which distort the typical cloud-top temperature-rain rate relationship. Studies have 

attempted to correct for orographic precipitation effects by introducing additional surface 

data such as terrain, elevation, and surface wind direction. While these studies assist 

rainfall estimation in mountainous settings, they do not provide the spatial and temporal 

resolution required for landslide hazards assessment.

Landslide hazard assessment is performed on an array of scales. For studies at the 

slope or watershed level, gauge or radar data remain the only reliable sources available. 

However, for large scale studies and for evaluating areas without an in situ network, 
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satellite data can provide crucial information for general landslide hazard analysis and 

susceptibility mapping with its continuous spatial and temporal coverage.

A global, satellite-based landslide algorithm has been developed using surface 

information and multi-satellite rainfall data Hong et al. (2006, 2007). The technique 

integrates surface parameters such as slope, land cover, soils, and elevation with satellite 

precipitation data to obtain an estimate of areas susceptible to landslides in near-real time. 

The global landslide hazard assessment model is composed of three parts: a susceptibility 

map, rainfall data, and combined product (Figure 5). The surface data including slope, 

land cover data, soil information, and geology were weighted in order of their relative 

importance in affecting landslide susceptibility and their products were combined into a 

global susceptibility map with values ranging from 0 – least susceptible to 5 – most 

susceptible. Rainfall data from the TMPA product was then evaluated cumulatively at 

every pixel globally and flagged when the average rain-rate exceeded the algorithm’s 

intensity-duration threshold. Lastly, these two products were combined so that when the 

rainfall rate at a pixel exceeds the threshold value and the pixel has a susceptibility of 

class of 4 or 5, the pixel is highlighted as having a predicted landslide event. The result of 

algorithm is a global indication of where landslide events are predicted at a 0.25º scale in 

near real-time. 

This model was then evaluated for its skill in predicting landslides by using a 

landslide inventory and comparing the model predications with actual events. In order to 

perform the model validation, a landslide inventory was compiled for 2003 landslide 

events globally from three data sources: the International Landslide Centre and the 

University of Durham, International Consortium on Landslides, and EM-DAT 

International Disaster Database (CRED) (EM-DAT 2006; ICL 2007; ILC 2007). The 

events reported in this database come from news or other media reports and only account 

for landslide events which have caused fatalities. This inventory is not representative of 

the total population of landslide events for the 2003 year but rather represents a cross-

section of events that occurred near large population centers, in areas with efficient and 

III. Landslide Susceptibility and Prediction Model Evaluation
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widespread reporting measures, or in areas which landslide researchers have focused their 

attention. The limited availability and unequal representation of landslide events is a 

major source of error in the validation process and research is ongoing.

Once the landslide inventory was compiled and locations were assigned to each 

event, the 2003 inventory was used to evaluate the susceptibility model. As introduced 

above, the susceptibility map represents a combination of weighted surface parameters to 

denote a landslide susceptibility level. Figure 6 illustrates the susceptibility map 

developed by Hong et al. (2006) along with the 228 events in the 2003 landslide 

inventory. When the landslide locations were matched to a corresponding susceptibility 

pixel, the distribution showed that 73% of the landslides fell within susceptibility 

Category 4 or 5 (Figure 7). The events falling within Category 0 are primarily due to 

landslides that occurred on small islands where there was no available surface data. The 

distribution of the landslide susceptibility suggests that on a global scale, the 

susceptibility map can largely resolve areas which have the potential to be susceptible to 

landslide events.

In order to test the second component of the algorithm involving the precipitation 

trigger, the global rainfall intensity-duration threshold curve was used to determine when 

the cumulative rainfall rate for each landslide location exceeded the curve value. Each 

day’s cumulative rainfall was considered for the 10 days prior to the recorded event at the 

exact pixel as well as the maximum and mean of a 3 x 3 pixel window. The number of 

times the threshold was exceeded was recorded for each of the three scenarios. In order to 

determine if the algorithm would have detected the landslide event, the events that had 

rainfall values exceeding the threshold curve were compared to the susceptibility 

categories for the same location. If the susceptibility category was a value of 4 or 5, the 

event was considered a successfully detected event. The statistics were summarized as a 

Probability of Detection (POD) for the 2003 landslide inventory. 

The algorithm was then evaluated from the opposite standpoint by using the 2003 

TMPA rainfall database as the input into the algorithm to test how many and where 

landslides were predicted compared to the actual 2003 inventory, termed the False Alarm 

Rate (FAR). Due to the large volume of detections, we considered only events that had 

rainfall accumulations which were flagged on the seventh day before the event. The 
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resulting predictions were then merged temporally and spatially to cluster events which 

had been listed on consecutive days and represented adjoining pixels. 338 separate events 

were identified as algorithm predictions for landslide events in 2003. Due to uncertainties 

in both the landslide inventory and algorithm predictions, the predicted events database 

was considered at range of radii to determine how many landslide events fell within 

specific distances of the predicted events on time scale of ± 1 day and ± 15 days from the 

reported event. The results and discussion are presented below.

The POD and FAR statistics for this evaluation represent preliminary and likely 

incomplete results. For the exact pixels, the POD was 14.5%, the 3x3 mean had a POD of 

11.9%, and the 3x3 maximum had a POD of 46%. The large POD value for the 

maximum pixel is likely misleading because it represents the maximum rainfall value of 

all the pixels for each day, meaning that the pixel recorded could change over the course 

of 10 days but would still be recorded as a cumulative measurement.

For the FAR, the areas considered at different buffers indicate that predictably, as 

the buffer size increases, more landslide events fall within the predicted range. Results 

indicate that 1 landslide event fell within the 10 km at a time resolution of ± 15 days from 

the reported event. When the radius increased to 100 km, 9.2% of the events matched 

those of the algorithm predictions by ± 1 day. Lastly, at a buffer of 200 km 69 events 

were detected for both the 1 and 15-day windows, totaling 20.5% of the algorithm 

prediction dataset. Because this false alarm calculation only considers the 7 day 

accumulation before a landslide event, it limits the number of landslides reported and 

thus likely underestimates the ability of the algorithm to accurately predict events. The 

same model runs were calculated for the 1 and 3-day accumulations but due to the size of 

the databases we were unable to process these results.

IV. Results
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The statistical results from the algorithm evaluation tests represent preliminary 

calculations and are expected to improve given more reliable validation data and 

adjustments to the algorithm inputs. The initial POD and FAR calculations likely 

underestimate the algorithm’s potential for landslide detection at the global scale. While 

rough, this evaluation brings about some interesting points and new research questions. 

Figure 8 shows a global comparison of the 2003 landslide events and the predictions 

made by the algorithm for the same year. While it is clear that these points rarely overlap, 

the distribution of predictions indicate that there seems to be an over-prediction of events 

along the western coast of India while the algorithm under-predicts events in the 

mountainous regions of northern India and Tibet and central and eastern China. This 

could be due to the difficulty of the TMPA product to accurately record rainfall over 

orographically complex regions. 

A second reason for the discrepancy between reported and predicted events may 

stem from population density and reporting biases. Figure 9 compares mean population 

density within a 50 km radius for the prediction and event databases. The histogram 

indicates that the 2003 landslide events generally occur in areas with larger population 

densities compared to that of the predicted events. This suggests that either the algorithm 

is under predicting events in more populated areas, or the 2003 landslide events are not 

capturing landslides which occurred in areas of low population density. It is more likely 

that both issues are impacting the evaluation results.

At present, there are a range of uncertainties associated with each input parameter 

which are difficult to quantify and when introduced into the system result in multiple 

sources of error. The 2003 landslide inventory was compiled from news reports, 

government papers, articles, and other sources and therefore only represents events that 

occurred in proximity to a population center. Due to biases in reporting by country and 

region as well as the ability to obtain such reports, it is extremely difficult if not 

impossible to quantitatively assess the completeness of the inventory. We are presently 

working to compile a landslide database for 2007, beginning in late June. Increasing the 

V. Discussion
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amount of global inventory data available for analysis will help to provide insight on the 

global distribution of reported landslides as well as how these inventories may be biased.

The global landslide hazard assessment and prediction algorithm is in its first 

phase of implementation and evaluation. As a result, the algorithm is associated with an 

array of uncertainty stemming from the accuracy of the TMPA rainfall data at high 

spatial and temporal resolutions, the weighting of the surface parameters that make up the 

global susceptibility map, and the assumption of a universal rainfall intensity-duration 

threshold relationship. These input parameters can most likely be improved when 

considered and evaluated at the regional scale.

There has been a large push in precipitation research to compare and evaluate 

different rainfall products on a variety of scales. Landslide hazard research requires 

rainfall information on the highest spatial and temporal resolutions possible, which also 

represent the most uncertain measurements at the point source and gridded satellite 

products. While research must be continued to more closely understand the relationship 

between products at varying length scales, the merged satellite products can provide 

relatively accurate rainfall information for landslide hazard assessment when being 

considered on larger spatial scales. 

With a better understanding of the accuracy in satellite rainfall data, the rainfall 

intensity-duration threshold curves may be able to be improved at the regional and local 

scales. Past calculations primarily used gauge information and nearby landslides to derive 

threshold curves; however, more continuous rainfall information and more complete 

landslide inventories can improve the threshold curves at the regional scale. When 

considered on smaller spatial scales, these curves may also be adjusted for regional 

climatology and other forcings which could influence the accuracy of the results.

Results for the global susceptibility map indicated that the current weighting 

scheme of the surface parameters was effectively able to categorize 73% of the 2003 

landslide events. When considered on the regional scale, these weights can be further 

attuned to the specific surface processes influencing landslide susceptibility. This will 

VI. Conclusions and Future Work 
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likely increase the POD of the susceptibility values by better categorizing surface cover 

with respect to landslide hazard as well as including some of the low lying or island 

regions which are currently absent in the susceptibility calculations.

Lastly, because the 2003 landslide database is compiled from reported events and 

any future inventory we may assemble will be similarly biased, it may be useful to 

incorporate population density into the algorithm’s susceptibility weighting to better 

predict landslides that have the potential to occur in populated areas. Figure 10 illustrates 

population density in 2005 with events in the 2007 inventory. By focusing more narrowly 

on populated regions, it may provide more accurate statistics for this algorithm. Due to 

the large influence of road cuts on landslide potential, this parameter may also be 

valuable to incorporate into the algorithm.

The concept of using satellite rainfall data to assess and predict the occurrence of 

landslides on the global scale is pioneering in the field of landslide hazard assessment. As 

such, this global landslide hazard assessment and prediction algorithm represents the first 

phase in tackling these issues. Given the uncertainties associated with each of the input 

parameters, it is difficult to determine as this point the absolute skill of this algorithm in 

detecting events on the global scale. However, with fine tuning and regional evaluation, 

this algorithm show great promise in approaching landslide hazard assessment globally 

and opening up the research community to addressing these issues in a broader context.

The evaluation also provides insight into the necessary considerations and potential 

adaptations to the algorithm for improved landslide hazard forecasting on a global scale 

and the need for international efforts for developing accurate landslide inventories.
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Figure 1: Rainfall Intensity-Duration threshold at the global regional and local scales as 
derived from seven different studies.
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Figure 2: Map of Puerto Rico showing a 30 m DEM and location of rainfall gauging stations. The grid boxes indicate the resolution of 
the current precipitation products. Three landslide inventories done by Larsen and Torres-Sanchez (1998) are included for comparison
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Figure 3: Comparison of gauge, radar, and satellite products for September 10th – 18th, 2004 in 
south-eastern Puerto Rico during Tropical Cyclone Jeanne.

Figure 4: Comparison of gauge, radar, and satellite products for the January 1st-11th, 2005 event in 
La Conchita, California. 
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Figure 5: Outline of Global Landslide Hazard Assessment Model methodology. Hong et al. (2007).
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Figure 6: Global landslide susceptibility map from Hong et al. (2007) and 2003 landslide inventory compiled from multiple sources.
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Figure 7: Distribution of 2003 landslide events for corresponding to the susceptibility category.
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Figure 8: Comparison of 2003 landside inventory events and the algorithm predictions
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Figure 9: Comparison of mean population density distribution within a 50 km radius of the 2003 landslide events and algorithm 
predictions with corresponding percentages of the total.
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Figure 10: Population density and 2007 landslide events in the Asian region (June 25th – August 1st)
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Rainfall Gauges
(NCDC,USGS)

Variable, 10,000 stations globally 
monitored by NCDC

Point Source
(~30 cm radius)

hourly, 1970s to  present
Wind errors, reporting issues, gauge 

placement

Surface Radar
(NEXRAD Doppler systems)

158 stations in US, 400 km maximum 
radius from station

4 km gridding
4-10 minutes, hourly products, 

1988 – present
Beam shielding and errors in mountain 

areas

IR-based estimates
PERSIANN-CCS

Global ~4 km Hourly, 2001 to present
Poor correlation to actual rain rate, 

indirect proxy 

Low-Orbit Satellite TRMM 
(TMI, PR)

50 ° N-S 0.25º 3 h, 1997 to present 
Limited temporal sampling, algorithm 

inconsistencies

TMPA
CMORPH

50º N-S
59º N-S

0.25º
3 h

1998 – Present
2002 - Present

Not available at small spatial scales 
(<25km) 

Table 1: Overview of different precipitation data sets, their coverage, resolution, time of operation and general limitations.

Rainfall Product
Coverage

(geographic)
Spatial 

Resolution
Temporal Resolution Limitations
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