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Abstract 

We evaluate the ability of an augmented version of the Community Land Model, 

version 3 (CLM3) (Niu et al., 2006) to represent monthly changes in soil moisture and 

groundwater storage from 1997–2005. We drive the model offline on a 1/8º grid using 

North American Land Data Assimilation System meteorological forcing data. The 

version of CLM3 used here represents water-table dynamics using a one-dimensional, 

lumped unconfined aquifer model and is one of the first land-surface models (LSMs) to 

represent bidirectional communication between the unsaturated and saturated zones.  

 Soil moisture and water table measurements obtained by the Illinois State Water 

Survey are used to assess the model’s ability to simulate monthly changes in total soil-

column water storage. We explore the degree to which the augmented version of CLM3 

realistically partitions the total change in terrestrial water storage between subsurface 

reservoirs. CLM3 augmented with the aquifer model outperforms its predecessor in the 

representation of the magnitude of changes in terrestrial water storage; however, the 

CLM3 with the aquifer model is unable to realistically partition changes in terrestrial 

water storage between subsurface reservoirs. It performs best in wet years when the water 

table is shallow. Neither a modification that increases vertical communication between 

the aquifer and the soil profile nor a modification that incorporates topographic variation 

in baseflow calculations measurably improves the simulated terrestrial water storage 

dynamics, although increasing recharge slightly improves the amplitude of the simulated 

seasonal cycle in groundwater storage. Additional preliminary conclusions are discussed, 

and future work is outlined.  



Introduction  

The transfer of water between land-surface reservoirs and the atmosphere 

determines the surface energy balance and the transfer of energy. Effectively modeling 

the transfer of water between land-surface reservoirs and the atmosphere is essential to 

realistic numerical weather forecasting and weather prediction. Accurate characterization 

of terrestrial water storage dynamics is necessary for a range of water-resources and 

agricultural applications, such as long-term water-resources planning, drought prediction, 

and the timing of crop planting.  

The land-surface modeling community has recently recognized aquifers as 

potentially important drivers of spatial and temporal variation in the terrestrial water 

storage and land-surface–atmosphere mass fluxes. Researchers have incorporated one-

dimensional water-table dynamics into a range of models of the land surface that are used 

to provide lower boundary fluxes in numerical weather and climate models (e.g., York 

and Gutowski, 2002; Liang et al., 2003; Yeh and Eltahir, 2005; Maxwell and Miller, 

2005; Niu et al., 2006). The ability of the augmented models to simulate terrestrial water 

storage variation has yet to be tested. 

Our objective is to characterize the ability of a land-surface model (LSM) to 

simulate terrestrial water storage dynamics on a regional scale. We take advantage of the 

relatively high spatial and temporal resolution of the ground-based hydrologic 

observations obtained by the Illinois State Water Survey (Hollinger and Isard, 1994; 

Robock et al., 2000) to evaluate the ability of an augmented version of the Community 

Land Model, version 3 (CLM3) (Bonan et al., 2002; Oleson et al., 2004; Niu et al., 2006) 



to represent changes in terrestrial water storage over a regional domain. The state of 

Illinois covers approximately 145,800 km2; cropland and grassland dominate the 

landscape in much of the state, which is characterized by relatively low topographic relief. 

The climate is temperate and continental. For additional discussion of the hydrology and 

hydrogeology of Illinois, see Changnon et al., 1988, Yeh et al., 1998, and Hollinger and 

Isard, 1994.  

 

Methods 

Observed dataset 

As a measure by which to evaluate the ability of CLM3 to simulate changes in 

terrestrial water storage, we used ground-based measurements of soil moisture and water-

table variations obtained from across the state of Illinois, USA, by the Illinois State Water 

Survey (ISWS) (Hollinger and Isard, 1994; Robock, 2000). We extended the terrestrial 

water storage time series of Rodell and Famiglietti (2001) to include data for the years 

1996–2005. The resulting time series (spanning the years 1983–2005) describes the 

components of statewide average terrestrial water storage in Illinois (Figure 1).  

 



Figure 1. Illinois statewide average terrestrial water storage variations (area-weighted 
average derived from ISWS observations). 

The time series partitions total-column terrestrial water storage into three parts: (1) water 

stored in the saturated zone, (2) water stored in the top two meters of the soil profile, and 

(3) water stored between the water table and two meters below the land surface (termed 

the “intermediate zone”). From the component time series, we computed the monthly 

change in water stored in each of the three components and the subsurface as a whole. 

Figure 2 shows the time series of monthly change in water stored in the total subsurface.  
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Figure 2. Monthly change in total-column terrestrial water storage (statewide area-
weighted average derived from interpolated ISWS point observations). 

Although we followed exactly the methods of Rodell and Famiglietti (2001) to 

derive the updated time series of terrestrial water storage in Illinois, the updated version 

of the dataset does not exactly coincide with the original dataset during the period of 

overlap (1983–1996). The sources of the slight discrepancies are fourfold: (1) We 

neglected surface reservoirs and snow as sources of terrestrial water storage variation 

Rodell and Famiglietti (2001) showed that in midlatitude regions such as Illinois, changes 

in water stored in snow and surface reservoirs are very small when compared to the 

magnitude of the variation in water stored in soil and groundwater. (2) Because data for 

the original sites were not continuous through 2005, we used a slightly different set of 

observation sites to provide inputs for the area-weighted state average. (3) When 

processing the soil-moisture data for the lowest soil layer (190–200 cm), we considered a 

larger portion of the data to be unreliable, which resulted in somewhat different 
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intermediate zone calculations. (4) The different mean and minimum values for terrestrial 

water storage components resulting from the longer record altered several relative 

measures (e.g., groundwater storage, which is computed as the total less the minimum 

value for the record). 

 

Community Land Model and variations 

Our investigation was composed of four model runs, each of which used a 

different version of the Community Land Model, version 3 (CLM3) (Oleson et al., 2004; 

Bonan et al., 2002). The Community Land Model is representative of current-generation 

LSMs used in comprehensive models of the climate system.  

Run 1 (“No Aquifer”) 

Our first run employed the standard version of CLM3 (Oleson et al., 2004; Bonan 

et al., 2002), which represents the entire soil profile with a 10-layer, 3.43-m soil column. 

It contains no representation of an aquifer, thereby implicitly assuming that the 

intermediate zone and groundwater are at steady state.  

Run 2 (“Low Recharge”) 

The second in our suite of runs used an augmented version of CLM3 (Niu et al., 

2006; hereafter the “Niu et al. CLM3”), which contains an unconfined aquifer model that 

represents vertical exchange of water between a single-layer unconfined groundwater 

model and the unsaturated soil column. We made slight modifications to the parameters 

used to generate baseflow. The runoff generation mechanism used by the Niu et al. 

CLM3 is different from the standard version of CLM3. Following the assumptions of 



Topmodel (Beven and Kirkby, 1979; Silvapalan et al., 1987) and Topmodel-inspired 

land-surface models (e.g.,  Stieglitz et al., 1997), the Niu et al. CLM3 calculates baseflow 

(Rsb) as an exponentially decaying function of grid-cell–mean depth to water (see Niu et 

al. [2005] for a detailed description): 

  (1a) ∇−= fz
sbsb eRR max

Niu and colleagues (2005) treat Rsbmax as a single, globally constant tuning parameter. 

The researchers replaced a product of several terrain-specific parameters used in other 

models with Rsbmax: 
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Where Ksat is the saturated hydraulic conductivity at the ground surface, f is the e-folding 

depth of saturated hydraulic conductivity (which is assumed to decay exponentially with 

depth), λ is the grid-cell-mean topographic index, and α is an “anisotropic factor,” which 

is used to correct for the smoothing of high-frequency topographic variation that occurs 

when coarse-resolution elevation is used to derive the grid-cell mean topographic index. 

We used region-specific f and λ values to calculate a reasonable region-specific Rsbmax.  

We calculated the e-folding depth, f, following the work of Miguez-Macho et al. 

(2006), who define f as a function of terrain slope (terrain slope = rise/run): 
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Where parameter a = 120, parameter b = 75, and β is the terrain slope (= rise/run). We 

used ArcGIS to calculate the terrain slope from USGS GTOPO30 DEM data that we had 

resampled to a 1/8º grid. The mean terrain slope in Illinois is ~ 0.128; using Equation 2, 



the statewide average value for f is 11.32. The mean topographic index for the state of 

Illinois is 11.70. We used 2000 as the anisotropic factor. CLM3 empirically calculates 

saturated hydraulic conductivity from soil texture data. Using the Lawrence and Chase 

(2006) soil texture dataset, the CLM3-computed statewide-mean saturated hydraulic 

conductivity is 3.16×10-5 mm s-1. The resulting statewide mean Rsbmax for Illinois was 

5.93×10-6.  

 Niu et al.’s model calculates vertical flux between the aquifer and the soil column 

according to Darcy’s Law. The model parameterizes vertical hydraulic conductivity 

(Kvert) as a function of depth of the intermediate zone: 
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Where Kbot is the hydraulic conductivity of the bottom layer of the soil column, f is the e-

folding depth of hydraulic conductivity (Equation 2), is the depth of the water table, 

and zbot is the depth of the bottom interface of the soil column. 

∇z

Run 3 (“High Recharge”) 

Making recharge an exponentially decaying function of water table depth 

decouples the soil column and the aquifer when the water table is deep; however, this 

parameterization may make it difficult for the model to restore communication between 

the saturated and unsaturated zones when wet periods follow prolonged dry periods. The 

third run used the Niu et al. (2006) model, which we modified to increase recharge to the 

aquifer. In the High Recharge run, we assumed that the vertical hydraulic conductivity 



between the unsaturated zone and the aquifer is equal to the hydraulic conductivity of the 

bottom soil layer (Kbot) and that it remains constant throughout the intermediate zone (i.e., 

it did not exponentially decay). This modification likely still underestimates the hydraulic 

conductivity of the intermediate zone because hydraulic conductivity is a highly 

nonlinear function of soil moisture, which increases with proximity to the water table. 

Run 4 (“Topography”) 

Neglecting inter-cell variation in topographic characteristics (as is done implicitly 

when the model is provided with an Rsbmax that is constant across the model domain) 

neglects one of the fundamental assumptions used to derive the baseflow equation used 

by Niu et al.’s CLM3. The Topmodel baseflow function and its derivatives implicitly 

assume that a watershed’s individual topographic characteristics help determine the 

watershed’s characteristic baseflow response (e.g., Silvapalan, 1987). To test whether the 

use of a globally constant value of Rsbmax adversely affects modeled baseflow, water-table 

dynamics, or both, we modified the High Recharge version of CLM3 to allow the 

topography-related baseflow-generation parameters to vary within the model domain. For 

each model grid cell, we calculated a grid-cell–specific Rsbmax using the grid-cell 

topographic characteristics (f and λ) and soil hydraulic properties (Ksat). We used 1/8º 

grid-cell-mean topographic index data derived from USGS HYDRO1K DEM data. 

 

Run specifications, land-surface input data, and forcing data 

A land-surface dataset derived from Moderate Resolution Spectroradiometer and 

Advanced Very High Resolution Radiometer satellite images (Lawrence and Chase, 
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2006) provided land-surface parameter initializations. The land-surface dataset has a 

native resolution of 1/20º; it was interpolated to a 1/8º grid. The model domain spanned 

36.75N to 42.75N and –91.75E to –87.25E. 

We used North American Land Data Assimilation System (NLDAS) 

meteorological forcing data (Cosgrove et al., 2003) to drive each of the four versions of 

CLM3 offline at 1/8º resolution from midnight January 1, 1997, to midnight January 1, 

2006. NLDAS meteorological forcing data was chosen because of its high spatial 

resolution and quality. Figure 3 shows statewide average precipitation during the period 

simulated by the models. 

Figure 3. Time series of cumulative precipitation averaged over the state of Illinois.

We initialized each run with the state variables from the end of a corresponding 

spin-up run. For each spin-up run, we used the NLDAS meteorological forcing data to 

drive the model from January 1, 1997, to January 1, 2006. For the three spin-up runs used 

to initialize the experiments employing Niu et al.’s CLM3 or a variation, we modified the 



code according to the methods outlined by Niu et al. (2006) to increase the speed with 

which the modeled depth to water reaches equilibrium. 

Because the Niu et al. CLM3 does not contain a state variable that tracks the 

water content of the intermediate zone, we could only infer the modeled variation in 

intermediate zone water storage. To estimate intermediate zone water storage changes, 

we assumed constant soil moisture throughout the intermediate zone equal to the aquifer 

specific retention. (Specific retention is the effective porosity of the aquifer less the 

aquifer specific yield. We assumed the effective porosity of the aquifer was equal to that 

of the bottom model soil layer and, following Niu et al. (2006), used 0.2 as the specific 

yield.)  

  

Results 

Statewide averages using model output were computed using a mask for the state 

of Illinois. Tables 1–3 show the correlation coefficient (rm,o) of the model output with 

observations.  
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Where τ is the lag, n is the number of members in each series, and o and m are series. 

Likelihood estimates (see shaded values in the box at the bottom of each table) for the 

correlation coefficients between the model output and observations were determined 

using 100,000 Monte Carlo runs, in each which we calculated the correlation coefficient, 



rm,o, between two 107-member series x and y. In each Monte Carlo experiment, x and y 

were unique realizations of the probability density function describing Gaussian white 

noise.  Future work will estimate confidence intervals for the correlation coefficients and 

more rigorous statistical analysis, if warranted. 

TABLE 1. 
Correlation coefficients of modeled change in soil-column water storage with 
observations (rm,o)  
  
 Lag (months) 
 -3 -2 -1 0 1 2 3

No Aquifer 0.251 0.423 0.667 0.324 0.322 -0.058 -0.311
Low Recharge -0.099 0.175 0.624 0.478 0.461 0.205 -0.049
High Recharge 0.136 0.354 0.663 0.382 0.328 0.030 -0.239

Topography 0.136 0.354 0.662 0.381 0.328 0.030 -0.238
       

Lag (months) 
-3 -2 -1 0 1 2 3

No Aquifer -0.079 -0.036 0.382 -0.117 0.300 0.039 -0.032
Low Recharge -0.208 -0.108 0.449 0.066 0.174 0.045 -0.033
High Recharge -0.138 -0.056 0.398 -0.054 0.189 0.064 -0.056

Topography -0.138 -0.056 0.399 -0.054 0.189 0.064 -0.055
        
Likelihood*   0.900 0.950 0.990 0.999 0.9999
lower bound of |r| (107-member 
series) 0.161 0.190 0.248 0.314 0.369

* A “Likelihood” value here of 0.99 means that, if the true correlation coefficient of the 
two time series is 0 (i.e., they are random noise), then 99% of the time the absolute value 
of the estimated correlation coefficient will be lower than the correlation coefficient 
given. 



 
TABLE 2. 
Correlation coefficients of modeled change in groundwater storage with 
observations (rmodel,obs) 
  
 Lag (months) 
 -3 -2 -1 0 1 2 3

Low Recharge -0.161 -0.156 -0.126 -0.021 0.097 0.168 0.241
High Recharge -0.257 -0.180 -0.154 0.007 0.220 0.287 0.311

Topography -0.257 -0.179 -0.154 0.007 0.221 0.288 0.311
        
 Lag (months) 
 -3 -2 -1 0 1 2 3

Low Recharge 0.028 0.046 0.029 0.045 0.062 0.018 0.032
High Recharge 0.026 0.089 -0.028 -0.009 0.062 0.011 0.005

Topography 0.026 0.089 -0.029 -0.010 0.062 0.011 0.005
        
Likelihood*   0.900 0.950 0.990 0.999 0.9999
lower bound of |r| (107-member 
series) 0.161 0.190 0.248 0.314 0.369

* A “Likelihood” value here of 0.99 means that, if the true correlation coefficient of the 
two time series is 0 (i.e., they are random noise), then 99% of the time the absolute value 
of the estimated correlation coefficient will be lower than the correlation coefficient 
given. 



 
TABLE 3.   
Correlation of modeled change in TWS with observations 
(rmodel,obs)   
  
 Lag (months) 
 -3 -2 -1 0 1 2 3

No Aquifer 0.258 0.291 0.456 0.177 0.171 -0.135 -0.346
Low Recharge 0.181 0.267 0.465 0.241 0.153 -0.070 -0.231
High Recharge 0.304 0.196 0.250 0.063 -0.022 -0.308 -0.421

Topography 0.303 0.197 0.246 0.063 -0.023 -0.308 -0.423
       

Lag (months) 
-3 -2 -1 0 1 2 3

No Aquifer -0.089 -0.120 0.215 -0.034 0.263 0.064 -0.074
Low Recharge -0.054 -0.090 0.185 -0.071 0.018 -0.034 -0.039
High Recharge -0.067 -0.231 0.000 -0.049 0.126 -0.077 -0.142

Topography -0.069 -0.229 -0.004 -0.048 0.125 -0.076 -0.145
        
Likelihood*   0.900 0.950 0.990 0.999 0.9999
|r| at lower bound of interval (107-
member series) 0.161 0.190 0.248 0.314 0.369

* A “Likelihood” value here of 0.99 means that, if the true correlation coefficient of the 
two time series is 0 (i.e., they are random noise), then 99% of the time the absolute value 
of the estimated correlation coefficient will be lower than the correlation coefficient 
given. 
 

The very slight differences in the correlation coefficients observed between the 

High Recharge and Topography runs, in combination with other model output (not 

shown), demonstrate that allowing the topographic characteristics of each grid cell to 

vary within the model domain (as was done in the Topography runs) did not have a large 

effect on the statewide average terrestrial water storage dynamics. (Because there was so 

little difference between the statewide averages of these runs, only some of the figures 

that follow contain output from both runs. If output from both runs is not shown, it was 



deemed too similar to merit separate inclusion.)  This is a somewhat unexpected result 

and will be analyzed further in future work. It is possible that allowing topographic 

characteristics to vary between model grid cells will have a larger effect in regions with 

greater topographic relief than Illinois: the standard deviation of the topographic index in 

Illinois is ~0.9. 

Although the increase in communication between the groundwater and the soil 

column slightly improved the partitioning of terrestrial water storage between subsurface 

reservoirs, none of the aquifer-equipped models realistically partition changes in 

terrestrial water storage into component reservoirs (Figure 4). (Note that in Panel B of 

Figure 4, the baseline CLM3, which does not contain a representation of groundwater, 

does not represent changes in the intermediate zone or groundwater. Constant storage 

was added to represent the assumption implicit in the model.) Figure 4 shows that the 

inclusion of an aquifer model significantly increases the skill of the model when 

representing the magnitude of variation in total-column terrestrial water storage. 



Figure 4. Terrestrial water storage variation and its components in Illinois: comparison 
of observations with modeled output.  

Although the annual cycle of groundwater storage is least realistic in the Low 

Recharge run, the time series of change in total-column terrestrial water storage change 

simulated by Low Recharge run has the highest correlation with observations. Figure 5 

juxtaposes total NLDAS precipitation with modeled and observed change in the amount 

of water stored in each of the three subsurface reservoirs. Note that all series in the Figure 

5 have been smoothed by convolution of each time series with a length-3 boxcar filter 

([1/3, 1/3, 1/3]). 

0

200

400

600

800

1000

1200

1400

1600

Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05
W

at
er

 S
to

ra
g

e,
 m

m

Soil Moisture

Intermediate zone

Groundwater

0

200

400

600

800

1000

1200

1400

1600

Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05

W
at

er
 S

to
ra

g
e,

 m
m

Groundwater

Soil Moisture

Intermediate zone

0

200

400

600

800

1000

1200

1400

1600

Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05

W
at

er
 S

to
ra

g
e,

 m
m

Soil Moisture

Intermediate zone

Groundwater

A. Observations B. CLM3 without aquifer model

D. CLM3 with aquifer model (high recharge)

W
at

er
 S

to
ra

g
e,

 m
m

0

200

400

600

800

1000

1200

1400

1600

Jan-97 Jan-98 Jan-99 Jan-00 Jan-01 Jan-02 Jan-03 Jan-04 Jan-05

Soil Moisture

Intermediate zone

Groundwater

C. CLM3 with aquifer model (low recharge)



Figure 5. Modeled change in components of terrestrial water storage (from the Low 
Recharge run) juxtaposed with corresponding observations and NLDAS total 
precipitation.  

Preliminary conclusions and future work 

The aquifer model introduced into CLM3 by Niu et al. (2006) improves the 

magnitude of water storage variations in the modeled soil moisture. Future work will 

quantify this improvement and will address whether a similar result could be obtained by 

simply increasing the depth of the modeled soil column. 

 The Niu et al. CLM3 does a poor job of partitioning terrestrial water storage 

change between subsurface reservoirs. It significantly underestimates the amplitude of 
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the annual cycle water stored in the saturated zone. After relatively wet years in the late 

1990s the Low Recharge model (Niu et al.’s original version) simulates very little 

recharge. The amplitude of the annual cycle of groundwater storage simulated by the 

High Recharge model is better than that simulated by the Low Recharge model; however, 

increasing recharge degrades the correlation of the modeled total terrestrial water storage 

with the observed. 

Initial visual assessment of model output implies that the aquifer-equipped CLM3, 

regardless of modification outlined above, does a better job at representing water table 

dynamics during wet years when the water table is shallow. This is to be expected: the 

deeper the water table, the less physically realistic the transfer of water from the upper 

soil layers, through the intermediate zone, to the aquifer at depth. Comparison of model 

skill at individual observation sites will help provide additional information regarding 

model skill and potential improvements. 

Future work will compare the model skill during wet and dry years and between 

wet and dry sites. Investigation into the seasonality of model skill (e.g., whether the 

model performs best when the modeled water table is falling) may also point the way 

toward potential efficient improvements in the parameterization. 

The representation of aquifer dynamics in CLM3 provides an opportunity for 

effective use of parameter optimization and calibration techniques. Subsurface water 

transfer in nature—and in physically based models—depends in large part on the value of 

hard-to-measure, highly spatially variable hydraulic properties (e.g., hydraulic 

conductivity). It is possible that on the large spatial scales represented by regional LSMs, 



the model is no longer particularly sensitive to the values of subsurface hydrogeologic 

parameters; more likely, models require detailed parameter inputs. Parameter 

optimization techniques applied to CLM3 using the rich observational dataset of Illinois 

as an objective will help highlight directions for future research and observation 

campaigns. 

  Similar analyses will be made using a gridded version of the Catchment Land 

Surface Model (Koster et al., 2000; Ducharne et al., 2000), which contains an implicit 

representation of water table dynamics. The Catchment Land Surface Model will be run 

at ¼º using NLDAS forcing data over Illinois using the Land Information System (Kumar 

et al., 2006). 
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